9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Nanodisco Balls: Control over Surface versus Core Loading of Diagnostically Active Nanocrystals into Polymer Nanoparticles

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanoparticles of complex architectures can have unique properties. Self-assembly of spherical nanocrystals is a high yielding route to such systems. In this study, we report the self-assembly of a polymer and nanocrystals into aggregates, where the location of the nanocrystals can be controlled to be either at the surface or in the core. These nanospheres, when surface decorated with nanocrystals, resemble disco balls, thus the term nanodisco balls. We studied the mechanism of this surface loading phenomenon and found it to be Ca 2+ dependent. We also investigated whether excess phospholipids could prevent nanocrystal adherence. We found surface loading to occur with a variety of nanocrystal types including iron oxide nanoparticles, quantum dots, and nanophosphors, as well as sizes (10–30 nm) and shapes. Additionally, surface loading occurred over a range of polymer molecular weights (∼30–3000 kDa) and phospholipid carbon tail length. We also show that nanocrystals remain diagnostically active after loading onto the polymer nanospheres, i.e., providing contrast in the case of magnetic resonance imaging for iron oxide nanoparticles and fluorescence for quantum dots. Last, we demonstrated that a fluorescently labeled protein model drug can be delivered by surface loaded nanospheres. We present a platform for contrast media delivery, with the unusual feature that the payload can be controllably localized to the core or the surface.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: not found

          Gold nanocages: synthesis, properties, and applications.

          Noble-metal nanocages comprise a novel class of nanostructures possessing hollow interiors and porous walls. They are prepared using a remarkably simple galvanic replacement reaction between solutions containing metal precursor salts and Ag nanostructures prepared through polyol reduction. The electrochemical potential difference between the two species drives the reaction, with the reduced metal depositing on the surface of the Ag nanostructure. In our most studied example, involving HAuCl(4) as the metal precursor, the resultant Au is deposited epitaxially on the surface of the Ag nanocubes, adopting their underlying cubic form. Concurrent with this deposition, the interior Ag is oxidized and removed, together with alloying and dealloying, to produce hollow and, eventually, porous structures that we commonly refer to as Au nanocages. This approach is versatile, with a wide range of morphologies (e.g., nanorings, prism-shaped nanoboxes, nanotubes, and multiple-walled nanoshells or nanotubes) available upon changing the shape of the initial Ag template. In addition to Au-based structures, switching the metal salt precursors to Na(2)PtCl(4) and Na(2)PdCl(4) allows for the preparation of Pt- and Pd-containing hollow nanostructures, respectively. We have found that changing the amount of metal precursor added to the suspension of Ag nanocubes is a simple means of tuning both the composition and the localized surface plasmon resonance (LSPR) of the metal nanocages. Using this approach, we are developing structures for biomedical and catalytic applications. Because discrete dipole approximations predicted that the Au nanocages would have large absorption cross-sections and because their LSPR can be tuned into the near-infrared (where the attenuation of light by blood and soft tissue is greatly reduced), they are attractive materials for biomedical applications in which the selective absorption of light at great depths is desirable. For example, we have explored their use as contrast enhancement agents for both optical coherence tomography and photoacoustic tomography, with improved performance observed in each case. Because the Au nanocages have large absorption cross-sections, they are also effective photothermal transducers; thus, they might provide a therapeutic effect through selective hyperthermia-induced killing of targeted cancer cells. Our studies in vitro have illustrated the feasibility of applying this technique as a less-invasive form of cancer treatment.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity.

            Anisotropic gold nanoparticles (AuNPs) have attracted the interest of scientists for over a century, but research in this field has considerably accelerated since 2000 with the synthesis of numerous 1D, 2D, and 3D shapes as well as hollow AuNP structures. The anisotropy of these nonspherical, hollow, and nanoshell AuNP structures is the source of the plasmon absorption in the visible region as well as in the near-infrared (NIR) region. This NIR absorption is especially sensitive to the AuNP shape and medium and can be shifted towards the part of the NIR region in which living tissue shows minimum absorption. This has led to crucial applications in medical diagnostics and therapy ("theranostics"), especially with Au nanoshells, nanorods, hollow nanospheres, and nanocubes. In addition, Au nanowires (AuNWs) can be synthesized with longitudinal dimensions of several tens of micrometers and can serve as plasmon waveguides for sophisticated optical devices. The application of anisotropic AuNPs has rapidly spread to optical, biomedical, and catalytic areas. In this Review, a brief historical survey is given, followed by a summary of the synthetic modes, variety of shapes, applications, and toxicity issues of this fast-growing class of nanomaterials. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Optical properties of star-shaped gold nanoparticles.

              Here we report the synthesis, structure, and optical properties of ca. 100 nm star-shaped gold nanoparticles. Single particle spectroscopy measurements revealed that these nanoparticles have multiple plasmon resonances resulting in polarization-dependent scattering with multiple spectral peaks, which correspond to the different tips on the star-shaped structure. The plasmon resonances were also found to be extremely sensitive to the local dielectric environment.
                Bookmark

                Author and article information

                Journal
                ACS Nano
                ACS Nano
                nn
                ancac3
                ACS Nano
                American Chemical Society
                1936-0851
                1936-086X
                04 September 2015
                04 September 2014
                23 September 2014
                : 8
                : 9
                : 9143-9153
                Affiliations
                [1] Departments of Radiology, Bioengineering, §Biochemistry and Biophysics, Cardiology, Chemistry, and #Materials Science and Engineering, University of Pennsylvania , 3400 Spruce Street, 1 Silverstein, Philadelphia, Pennsylvania 19104, United States
                []Department of Chemistry, Pennsylvania State University , University Park, Pennsylvania 16802, United States
                Author notes
                [* ]Address correspondence to david.cormode@ 123456uphs.upenn.edu .
                Article
                10.1021/nn502730q
                4174093
                25188401
                5a9f45d9-a41f-4afa-9597-1c47a92f3b00
                Copyright © 2014 American Chemical Society

                Terms of Use

                History
                : 19 May 2014
                : 04 September 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                nn502730q
                nn-2014-02730q

                Nanotechnology
                directed assembly,nanoparticles,polyphosphazene,mri,multimodal,theranostic
                Nanotechnology
                directed assembly, nanoparticles, polyphosphazene, mri, multimodal, theranostic

                Comments

                Comment on this article