12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Occurrence and concentration of 20–100 μm sized microplastic in highway runoff and its removal in a gross pollutant trap – Bioretention and sand filter stormwater treatment train

      , , ,
      Science of The Total Environment
      Elsevier BV

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Production, use, and fate of all plastics ever made

          We present the first ever global account of the production, use, and end-of-life fate of all plastics ever made by humankind.
            • Record: found
            • Abstract: found
            • Article: not found

            Are We Speaking the Same Language? Recommendations for a Definition and Categorization Framework for Plastic Debris

            The accumulation of plastic litter in natural environments is a global issue. Concerns over potential negative impacts on the economy, wildlife, and human health provide strong incentives for improving the sustainable use of plastics. Despite the many voices raised on the issue, we lack a consensus on how to define and categorize plastic debris. This is evident for microplastics, where inconsistent size classes are used and where the materials to be included are under debate. While this is inherent in an emerging research field, an ambiguous terminology results in confusion and miscommunication that may compromise progress in research and mitigation measures. Therefore, we need to be explicit on what exactly we consider plastic debris. Thus, we critically discuss the advantages and disadvantages of a unified terminology, propose a definition and categorization framework, and highlight areas of uncertainty. Going beyond size classes, our framework includes physicochemical properties (polymer composition, solid state, solubility) as defining criteria and size, shape, color, and origin as classifiers for categorization. Acknowledging the rapid evolution of our knowledge on plastic pollution, our framework will promote consensus building within the scientific and regulatory community based on a solid scientific foundation.
              • Record: found
              • Abstract: found
              • Article: not found

              Plastics in soil: Analytical methods and possible sources.

              At least 300 Mio t of plastic are produced annually, from which large parts end up in the environment, where it persists over decades, harms biota and enters the food chain. Yet, almost nothing is known about plastic pollution of soil; hence, the aims of this work are to review current knowledge on i) available methods for the quantification and identification of plastic in soil, ii) the quantity and possible input pathways of plastic into soil, (including first preliminary screening of plastic in compost), and iii) its fate in soil. Methods for plastic analyses in sediments can potentially be adjusted for application to soil; yet, the applicability of these methods for soil needs to be tested. Consequently, the current data base on soil pollution with plastic is still poor. Soils may receive plastic inputs via plastic mulching or the application of plastic containing soil amendments. In compost up to 2.38-1200mg plastic kg-1 have been found so far; the plastic concentration of sewage sludge varies between 1000 and 24,000 plastic items kg-1. Also irrigation with untreated and treated wastewater (1000-627,000 and 0-125,000 plastic items m-3, respectively) as well as flooding with lake water (0.82-4.42 plastic items m-3) or river water (0-13,751 items km-2) can provide major input pathways for plastic into soil. Additional sources comprise littering along roads and trails, illegal waste dumping, road runoff as well as atmospheric input. With these input pathways, plastic concentrations in soil might reach the per mill range of soil organic carbon. Most of plastic (especially >1μm) will presumably be retained in soil, where it persists for decades or longer. Accordingly, further research on the prevalence and fate of such synthetic polymers in soils is urgently warranted.

                Author and article information

                Journal
                Science of The Total Environment
                Science of The Total Environment
                Elsevier BV
                00489697
                February 2022
                February 2022
                : 809
                : 151151
                Article
                10.1016/j.scitotenv.2021.151151
                34688750
                5aa04021-027c-4082-9ef7-7929d939c669
                © 2022

                https://www.elsevier.com/tdm/userlicense/1.0/

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article

                Related Documents Log