5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Electrically-Evoked Proximity Sensation Can Enhance Fine Finger Control in Telerobotic Pinch

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          For teleoperation tasks requiring high control accuracy, it is essential to provide teleoperators with information on the interaction between the end effector and the remote environment. Real-time imaging devices have been widely adopted, but it delivers limited information, especially when the end effectors approach the target following the line-of-sight. In such situations, teleoperators rely on the perspective at the screen and can apply high force unintentionally at the initial contact. This research proposes to deliver the distance information at teleoperation to the fingertips of teleoperators, i.e., proximity sensation. Transcutaneous electrical stimulation was applied onto the fingertips of teleoperators, with the pulsing frequency inversely proportional to the distance. The efficacy of the proximity sensation was evaluated by the initial contact force during telerobotic pinch in three sensory conditions: vision only, vision + visual assistance (distance on the screen), and vision + proximity sensation. The experiments were repeated at two viewing angles: 30–60° and line-of-sight, for eleven healthy human subjects. For both cases, the initial contact force could be significantly reduced by either visual assistance (20–30%) or the proximity sensation (60–70%), without additional processing time. The proximity sensation is two-to-three times more effective than visual assistance regarding the amount of force reduction.

          Related collections

          Most cited references 45

          • Record: found
          • Abstract: found
          • Article: not found

          Robotic surgery: a current perspective.

          To review the history, development, and current applications of robotics in surgery. Surgical robotics is a new technology that holds significant promise. Robotic surgery is often heralded as the new revolution, and it is one of the most talked about subjects in surgery today. Up to this point in time, however, the drive to develop and obtain robotic devices has been largely driven by the market. There is no doubt that they will become an important tool in the surgical armamentarium, but the extent of their use is still evolving. A review of the literature was undertaken using Medline. Articles describing the history and development of surgical robots were identified as were articles reporting data on applications. Several centers are currently using surgical robots and publishing data. Most of these early studies report that robotic surgery is feasible. There is, however, a paucity of data regarding costs and benefits of robotics versus conventional techniques. Robotic surgery is still in its infancy and its niche has not yet been well defined. Its current practical uses are mostly confined to smaller surgical procedures.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Electrotactile and vibrotactile displays for sensory substitution systems.

            Sensory substitution systems provide their users with environmental information through a human sensory channel (eye, ear, or skin) different from that normally used, or with the information processed in some useful way. We review the methods used to present visual, auditory, and modified tactile information to the skin. First, we discuss present and potential future applications of sensory substitution, including tactile vision substitution (TVS), tactile auditory substitution, and remote tactile sensing or feedback (teletouch). Next, we review the relevant sensory physiology of the skin, including both the mechanisms of normal touch and the mechanisms and sensations associated with electrical stimulation of the skin using surface electrodes (electrotactile (also called electrocutaneous) stimulation). We briefly summarize the information-processing ability of the tactile sense and its relevance to sensory substitution. Finally, we discuss the limitations of current tactile display technologies and suggest areas requiring further research for sensory substitution systems to become more practical.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The precision of proprioceptive position sense.

              The purpose of this study was to determine the precision of proprioceptive localization of the hand in humans. We derived spatial probability distributions which describe the precision of localization on the basis of three different sources of information: proprioceptive information about the left hand, proprioceptive information about the right hand, and visual information. In the experiment subjects were seated at a table and had to perform three different position-matching tasks. In each task, the position of a target and the position of an indicator were available in a different combination of two of these three sources of information. From the spatial distributions of indicated positions in these three conditions, we derived spatial probability distributions for proprioceptive localization of the two hands and for visual localization. For proprioception we found that localization in the radial direction with respect to the shoulder is more precise than localization in the azimuthal direction. The distributions for proprioceptive localization also suggest that hand positions closer to the shoulder are localized more precisely than positions further away. These patterns can be understood from the geometry of the arm. In addition, the variability in the indicated positions suggests that the shoulder and elbow angles are known to the central nervous system with a precision of 0.6-1.1 degrees. This is a considerably better precision than the values reported in studies on perception of these angles. This implies that joint angles, or quantities equivalent to them, are represented in the central nervous system more precisely than they are consciously perceived. For visual localization we found that localization in the azimuthal direction with respect to the cyclopean eye is more precise than localization in the radial direction. The precision of the perception of visual direction is of the order of 0.2-0.6 degrees.
                Bookmark

                Author and article information

                Contributors
                hangue.park@tamu.edu
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                13 January 2020
                13 January 2020
                2020
                : 10
                Affiliations
                [1 ]ISNI 0000 0004 4687 2082, GRID grid.264756.4, Department of Electrical & Computer Engineering, , Texas A&M University, ; College Station, TX 77843 USA
                [2 ]ISNI 0000 0001 2171 7754, GRID grid.255649.9, Division of Mechanical and Biomedical Engineering, Ewha Womans University, ; Seoul, 03760 South Korea
                Article
                56985
                10.1038/s41598-019-56985-9
                6957695
                31932709
                © The Author(s) 2020

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Categories
                Article
                Custom metadata
                © The Author(s) 2020

                Uncategorized

                electrical and electronic engineering, sensory processing

                Comments

                Comment on this article