Blog
About

12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Primary Amebic Meningoencephalitis Deaths Associated With Sinus Irrigation Using Contaminated Tap Water

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Naegleria fowleri is a climate-sensitive, thermophilic ameba found in the environment, including warm, freshwater lakes and rivers. Primary amebic meningoencephalitis (PAM), which is almost universally fatal, occurs when N. fowleri-containing water enters the nose, typically during swimming, and N. fowleri migrates to the brain via the olfactory nerve. In 2011, 2 adults died in Louisiana hospitals of infectious meningoencephalitis after brief illnesses. Clinical and environmental testing and case investigations were initiated to determine the cause of death and to identify the exposures. Both patients had diagnoses of PAM. Their only reported water exposures were tap water used for household activities, including regular sinus irrigation with neti pots. Water samples, tap swab samples, and neti pots were collected from both households and tested; N. fowleri were identified in water samples from both homes. These are the first reported PAM cases in the United States associated with the presence of N. fowleri in household plumbing served by treated municipal water supplies and the first reports of PAM potentially associated with the use of a nasal irrigation device. These cases occurred in the context of an expanding geographic range for PAM beyond southern tier states with recent case reports from Minnesota, Kansas, and Virginia. These infections introduce an additional consideration for physicians recommending nasal irrigation and demonstrate the importance of using appropriate water (distilled, boiled, filtered) for nasal irrigation. Furthermore, the changing epidemiology of PAM highlights the importance of raising awareness about this disease among physicians treating persons showing meningitislike symptoms.

          Related collections

          Most cited references 22

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Biofilms: Microbial Life on Surfaces

          Microorganisms attach to surfaces and develop biofilms. Biofilm-associated cells can be differentiated from their suspended counterparts by generation of an extracellular polymeric substance (EPS) matrix, reduced growth rates, and the up- and down- regulation of specific genes. Attachment is a complex process regulated by diverse characteristics of the growth medium, substratum, and cell surface. An established biofilm structure comprises microbial cells and EPS, has a defined architecture, and provides an optimal environment for the exchange of genetic material between cells. Cells may also communicate via quorum sensing, which may in turn affect biofilm processes such as detachment. Biofilms have great importance for public health because of their role in certain infectious diseases and importance in a variety of device-related infections. A greater understanding of biofilm processes should lead to novel, effective control strategies for biofilm control and a resulting improvement in patient management.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri, and Sappinia diploidea.

            Among the many genera of free-living amoebae that exist in nature, members of only four genera have an association with human disease: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. Acanthamoeba spp. and B. mandrillaris are opportunistic pathogens causing infections of the central nervous system, lungs, sinuses and skin, mostly in immunocompromised humans. Balamuthia is also associated with disease in immunocompetent children, and Acanthamoeba spp. cause a sight-threatening infection, Acanthamoeba keratitis, mostly in contact-lens wearers. Of more than 30 species of Naegleria, only one species, N. fowleri, causes an acute and fulminating meningoencephalitis in immunocompetent children and young adults. In addition to human infections, Acanthamoeba, Balamuthia and Naegleria can cause central nervous system infections in animals. Because only one human case of encephalitis caused by Sappinia diploidea is known, generalizations about the organism as an agent of disease are premature. In this review we summarize what is known of these free-living amoebae, focusing on their biology, ecology, types of disease and diagnostic methods. We also discuss the clinical profiles, mechanisms of pathogenesis, pathophysiology, immunology, antimicrobial sensitivity and molecular characteristics of these amoebae.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Multiplex real-time PCR assay for simultaneous detection of Acanthamoeba spp., Balamuthia mandrillaris, and Naegleria fowleri.

              Infections caused by Naegleria fowleri, Acanthamoeba spp., and Balamuthia mandrillaris occur throughout the world and pose many diagnostic challenges. To date, at least 440 cases of severe central nervous system infections caused by these amebas have been documented worldwide. Rapid and specific identification of these free-living amebas in clinical samples is of crucial importance for efficient case management. We have developed a triplex real-time TaqMan PCR assay that can simultaneously identify Acanthamoeba spp., B. mandrillaris, and N. fowleri in the same PCR vessel. The assay was validated with 22 well-characterized amebic strains harvested from cultures and nine clinical specimens that were previously characterized by in vitro culture and/or immunofluorescence assay. The triplex assay demonstrated high specificity and a rapid test completion time of less than 5 h from the reception of the specimen in the laboratory. This assay was able to detect one single ameba per sample analyzed, as determined with cerebrospinal fluid spiked with diluted cultured amebas. This assay could become useful for fast laboratory diagnostic assessment of amebic infections (caused by free-living amebas) in laboratories with adequate infrastructure to perform real-time PCR testing.
                Bookmark

                Author and article information

                Journal
                Clinical Infectious Diseases
                Clinical Infectious Diseases
                Oxford University Press (OUP)
                1058-4838
                1537-6591
                October 08 2012
                November 01 2012
                August 22 2012
                November 01 2012
                : 55
                : 9
                : e79-e85
                Article
                10.1093/cid/cis626
                22919000
                © 2012

                Comments

                Comment on this article