3
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Efficacy of 1064 nm Photobiomodulation Dosimetry Delivered with a Collimated Flat-Top Handpiece in the Management of Peripheral Facial Paralysis in Patients Unresponsive to Standard Treatment Care: A Case Series

      , , ,
      Journal of Clinical Medicine
      MDPI AG

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Peripheral facial paralysis (PFP) is a common condition where oxidative stress (OS) is involved in the pathophysiology of facial paralysis, inhibiting peripheral nerve regeneration, which can be featured in Bell’s palsy, Ramsay Hunt syndrome and Lyme disease. The current standard care treatments lack consensus and clear guidelines. Hence, the utilization of the antioxidant immunomodulator photobiomodulation (PBM) can optimize clinical outcomes in patients who are unresponsive to standard care treatments. Our study describes three unique cases of chronic PFP of various origins that were unresponsive to standard care treatments, but achieved a significant and complete recovery of facial paralysis following PBM therapy. Case presentations: Case #1: a 30-year-old male who presented with a history of 12 years of left-side facial paralysis and tingling as a result of Bell’s palsy, where all the standard care treatments failed to restore the facial muscles’ paralysis. Eleven trigger and affected points were irradiated with 1064 nm with an irradiance of ~0.5 W/cm2 delivered with a collimated prototype flat-top (6 cm2) in a pulsed mode, with a 100 µs pulse duration at a frequency of 10 Hz for 60 s (s) per point. Each point received a fluence of 30 J/cm2 according to the following treatment protocol: three times a week for the first three months, then twice a week for another three weeks, and finally once a week for the following three months. The results showed an improvement in facial muscles’ functionality (FMF) by week two, whereas significant improvement was observed after 11 weeks of PBM, after which the House–Brackmann grading scale (HBGS) of facial nerve palsy dropped to 8 from 13 prior to the treatment. Six months after PBM commencement, electromyography (EMG) showed sustainability of the FMF. Case #2: A five-year-old female who presented with a 6-month history of severe facial paralysis due to Lyme disease. The same PBM parameters were utilized, but the treatment protocol was as follows: three times a week for one month (12 consecutive treatment sessions), then the patient received seven more sessions twice a week. During the same time period, the physiotherapy of the face muscles was also delivered intensively twice a week (10 consecutive treatments in five weeks). Significant improvements in FMF and sustainability over a 6-month follow-up were observed. Case #3: A 52-year-old male who presented with severe facial palsy (Grade 6 on HBGS) and was diagnosed with Ramsay Hunt syndrome. The same laser parameters were employed, but the treatment protocol was as follows: three times a week for three weeks, then reduced to twice a week for another three weeks, then weekly for the next three months. By week 12, the patient showed a significant FMF improvement, and by week 20, complete FMF had been restored. Our results, for the first time, showed pulsed 1064 nm PBM delivered with a flat-top handpiece protocol is a valid and its treatment protocol modified, depending on the origin and severity of the condition, which is fundamental in optimizing facial paralysis recovery and alleviating neurological symptoms. Further extensive studies with large data are warranted to validate our PBM dosimetry and treatment protocols.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Mechanisms and applications of the anti-inflammatory effects of photobiomodulation

          Photobiomodulation (PBM) also known as low-level level laser therapy is the use of red and near-infrared light to stimulate healing, relieve pain, and reduce inflammation. The primary chromophores have been identified as cytochrome c oxidase in mitochondria, and calcium ion channels (possibly mediated by light absorption by opsins). Secondary effects of photon absorption include increases in ATP, a brief burst of reactive oxygen species, an increase in nitric oxide, and modulation of calcium levels. Tertiary effects include activation of a wide range of transcription factors leading to improved cell survival, increased proliferation and migration, and new protein synthesis. There is a pronounced biphasic dose response whereby low levels of light have stimulating effects, while high levels of light have inhibitory effects. It has been found that PBM can produce ROS in normal cells, but when used in oxidatively stressed cells or in animal models of disease, ROS levels are lowered. PBM is able to up-regulate anti-oxidant defenses and reduce oxidative stress. It was shown that PBM can activate NF-kB in normal quiescent cells, however in activated inflammatory cells, inflammatory markers were decreased. One of the most reproducible effects of PBM is an overall reduction in inflammation, which is particularly important for disorders of the joints, traumatic injuries, lung disorders, and in the brain. PBM has been shown to reduce markers of M1 phenotype in activated macrophages. Many reports have shown reductions in reactive nitrogen species and prostaglandins in various animal models. PBM can reduce inflammation in the brain, abdominal fat, wounds, lungs, spinal cord.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Multiple roles of cytochrome c oxidase in mammalian cells under action of red and IR-A radiation.

            Tiina Karu (2010)
            This article reviews the current knowledge in photobiology and photomedicine about the influence of monochromatic, quasimonochromatic, and bread-band radiation of red-to-near infrared (IR-A) part on solar spectrum upon mammalian cells and human skin. The role of cytochrome c oxidase as the photoacceptor and photosignal transducer is underlined and its photosensitivity at certain circumstances is discussed. The role of ATP as a critical signaling molecule is discussed. (c) 2010 IUBMB
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Bell's palsy: aetiology, clinical features and multidisciplinary care.

              Bell's palsy is a common cranial neuropathy causing acute unilateral lower motor neuron facial paralysis. Immune, infective and ischaemic mechanisms are all potential contributors to the development of Bell's palsy, but the precise cause remains unclear. Advancements in the understanding of intra-axonal signal molecules and the molecular mechanisms underpinning Wallerian degeneration may further delineate its pathogenesis along with in vitro studies of virus-axon interactions. Recently published guidelines for the acute treatment of Bell's palsy advocate for steroid monotherapy, although controversy exists over whether combined corticosteroids and antivirals may possibly have a beneficial role in select cases of severe Bell's palsy. For those with longstanding sequaelae from incomplete recovery, aesthetic, functional (nasal patency, eye closure, speech and swallowing) and psychological considerations need to be addressed by the treating team. Increasingly, multidisciplinary collaboration between interested clinicians from a wide variety of subspecialties has proven effective. A patient centred approach utilising physiotherapy, targeted botulinum toxin injection and selective surgical intervention has reduced the burden of long-term disability in facial palsy.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                JCMOHK
                Journal of Clinical Medicine
                JCM
                MDPI AG
                2077-0383
                October 2023
                September 29 2023
                : 12
                : 19
                : 6294
                Article
                10.3390/jcm12196294
                5aa2cb42-89e9-4ed2-8655-e8a939bbea74
                © 2023

                https://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article