14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Amyloid-PET predicts inhibition of de novo plaque formation upon chronic γ-secretase modulator treatment

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In a positron-emission tomography (PET) study with the β-amyloid (Aβ) tracer [ 18F]-florbetaben, we previously showed that Aβ deposition in transgenic mice expressing Swedish mutant APP (APP-Swe) mice can be tracked in vivo. γ-Secretase modulators (GSMs) are promising therapeutic agents by reducing generation of the aggregation prone Aβ 42 species without blocking general γ-secretase activity. We now aimed to investigate the effects of a novel GSM [8-(4-Fluoro-phenyl)-[1,2,4]triazolo[1,5–a]pyridin-2-yl]-[1-(3-methyl-[1,2,4]thiadiazol-5-yl)-piperidin-4-yl]-amine (RO5506284) displaying high potency in vitro and in vivo on amyloid plaque burden and used longitudinal Aβ-microPET to trace individual animals. Female transgenic (TG) APP-Swe mice aged 12 months (m) were assigned to vehicle (TG-VEH, n=12) and treatment groups (TG-GSM, n=12), which received daily RO5506284 (30 mg kg −1) treatment for 6 months. A total of 131 Aβ-PET recordings were acquired at baseline (12 months), follow-up 1 (16 months) and follow-up 2 (18 months, termination scan), whereupon histological and biochemical analyses of Aβ were performed. We analyzed the PET data as VOI-based cortical standard-uptake-value ratios (SUVR), using cerebellum as reference region. Individual plaque load assessed by PET remained nearly constant in the TG-GSM group during 6 months of RO5506284 treatment, whereas it increased progressively in the TG-VEH group. Baseline SUVR in TG-GSM mice correlated with Δ%-SUVR, indicating individual response prediction. Insoluble Aβ 42 was reduced by 56% in the TG-GSM versus the TG-VEH group relative to the individual baseline plaque load estimates. Furthermore, plaque size histograms showed differing distribution between groups of TG mice, with fewer small plaques in TG-GSM animals. Taken together, in the first Aβ-PET study monitoring prolonged treatment with a potent GSM in an AD mouse model, we found clear attenuation of de novo amyloidogenesis. Moreover, longitudinal PET allows non-invasive assessment of individual plaque-load kinetics, thereby accommodating inter-animal variations.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          Memantine in moderate-to-severe Alzheimer's disease.

          Overstimulation of the N-methyl-D-aspartate (NMDA) receptor by glutamate is implicated in neurodegenerative disorders. Accordingly, we investigated memantine, an NMDA antagonist, for the treatment of Alzheimer's disease. Patients with moderate-to-severe Alzheimer's disease were randomly assigned to receive placebo or 20 mg of memantine daily for 28 weeks. The primary efficacy variables were the Clinician's Interview-Based Impression of Change Plus Caregiver Input (CIBIC-Plus) and the Alzheimer's Disease Cooperative Study Activities of Daily Living Inventory modified for severe dementia (ADCS-ADLsev). The secondary efficacy end points included the Severe Impairment Battery and other measures of cognition, function, and behavior. Treatment differences between base line and the end point were assessed. Missing observations were imputed by using the most recent previous observation (the last observation carried forward). The results were also analyzed with only the observed values included, without replacing the missing values (observed-cases analysis). Two hundred fifty-two patients (67 percent women; mean age, 76 years) from 32 U.S. centers were enrolled. Of these, 181 (72 percent) completed the study and were evaluated at week 28. Seventy-one patients discontinued treatment prematurely (42 taking placebo and 29 taking memantine). Patients receiving memantine had a better outcome than those receiving placebo, according to the results of the CIBIC-Plus (P=0.06 with the last observation carried forward, P=0.03 for observed cases), the ADCS-ADLsev (P=0.02 with the last observation carried forward, P=0.003 for observed cases), and the Severe Impairment Battery (P<0.001 with the last observation carried forward, P=0.002 for observed cases). Memantine was not associated with a significant frequency of adverse events. Antiglutamatergic treatment reduced clinical deterioration in moderate-to-severe Alzheimer's disease, a phase associated with distress for patients and burden on caregivers, for which other treatments are not available. Copyright 2003 Massachusetts Medical Society
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic treatment with the gamma-secretase inhibitor LY-411,575 inhibits beta-amyloid peptide production and alters lymphopoiesis and intestinal cell differentiation.

            Inhibition of gamma-secretase, one of the enzymes responsible for the cleavage of the amyloid precursor protein (APP) to produce the pathogenic beta-amyloid (Abeta) peptides, is an attractive approach to the treatment of Alzheimer disease. In addition to APP, however, several other gamma-secretase substrates have been identified (e.g. Notch), and altered processing of these substrates by gamma-secretase inhibitors could lead to unintended biological consequences. To study the in vivo consequences of gamma-secretase inhibition, the gamma-secretase inhibitor LY-411,575 was administered to C57BL/6 and TgCRND8 APP transgenic mice for 15 days. Although most tissues were unaffected, doses of LY-411,575 that inhibited Abeta production had marked effects on lymphocyte development and on the intestine. LY-411,575 decreased overall thymic cellularity and impaired intrathymic differentiation at the CD4(-)CD8(-)CD44(+)CD25(+) precursor stage. No effects on peripheral T cell populations were noted following LY-411,575 treatment, but evidence for the altered maturation of peripheral B cells was observed. In the intestine, LY-411,575 treatment increased goblet cell number and drastically altered tissue morphology. These effects of LY-411,575 were not seen in mice that were administered LY-D, a diastereoisomer of LY-411,575, which is a very weak gamma-secretase inhibitor. These studies show that inhibition of gamma-secretase has the expected benefit of reducing Abeta in a murine model of Alzheimer disease but has potentially undesirable biological effects as well, most likely because of the inhibition of Notch processing.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Imaging Abeta plaques in living transgenic mice with multiphoton microscopy and methoxy-X04, a systemically administered Congo red derivative.

              The identification of amyloid deposits in living Alzheimer disease (AD) patients is important for both early diagnosis and for monitoring the efficacy of newly developed anti-amyloid therapies. Methoxy-X04 is a derivative of Congo red and Chrysamine-G that contains no acid groups and is therefore smaller and much more lipophilic than Congo red or Chrysamine-G. Methoxy-X04 retains in vitro binding affinity for amyloid beta (Abeta) fibrils (Ki = 26.8 nM) very similar to that of Chrysamine-G (Ki = 25.3 nM). Methoxy-X04 is fluorescent and stains plaques, tangles, and cerebrovascular amyloid in postmortem sections of AD brain with good specificity. Using multiphoton microscopy to obtain high-resolution (1 microm) fluorescent images from the brains of living PSI/APP mice, individual plaques could be distinguished within 30 to 60 min after a single i.v. injection of 5 to 10 mg/kg methoxy-X04. A single i.p. injection of 10 mg/kg methoxy-X04 also produced high contrast images of plaques and cerebrovascular amyloid in PSI/APP mouse brain. Complementary quantitative studies using tracer doses of carbon- 11-labeled methoxy-X04 show that it enters rat brain in amounts that suggest it is a viable candidate as a positron emission tomography (PET) amyloid-imaging agent for in vivo human studies.
                Bookmark

                Author and article information

                Journal
                Mol Psychiatry
                Mol. Psychiatry
                Molecular Psychiatry
                Nature Publishing Group
                1359-4184
                1476-5578
                October 2015
                09 June 2015
                : 20
                : 10
                : 1179-1187
                Affiliations
                [1 ]Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich , Munich, Germany
                [2 ]DZNE—German Center for Neurodegenerative Diseases , Munich, Germany
                [3 ]Laboratory of Neurodegeneration, International Institute of Molecular and Cell Biology , Warsaw, Poland
                [4 ]Munich Cluster for Systems Neurology (SyNergy) , Munich, Germany
                [5 ]Biomedical Center (BMC), Ludwig-Maximilians-University of Munich , Munich, Germany
                [6 ]Department of Psychiatry, University of Oslo , Oslo, Norway
                [7 ]Roche Pharma Research and Early Development, Pharmaceutical Sciences, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel, Switzerland
                [8 ]Roche Pharma Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel, Switzerland
                [9 ]Roche Pharma Research and Early Development, Neuroscience Discovery, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd. , Basel, Switzerland
                Author notes
                [* ]Department of Nuclear Medicine, Ludwig-Maximilians-University of Munich , Marchioninistr. 15, Munich 81377, Germany. E-mail: axel.rominger@ 123456med.uni-muenchen.de
                [10]

                These authors contributed equally to this work.

                Article
                mp201574
                10.1038/mp.2015.74
                4759098
                26055427
                5aa31b55-ee9c-4390-aad3-c3d2b4cbe884
                Copyright © 2015 Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

                History
                : 22 December 2014
                : 31 March 2015
                : 13 April 2015
                Categories
                Original Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article