+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Recent advances in cerebral oximetry. Assessment of cerebral autoregulation with near-infrared spectroscopy: myth or reality?

      1 , a , 1



      Cerebral autoregulation, NIRS, Oximetry

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          In recent years, the feasibility of near-infrared spectroscopy to continuously assess cerebral autoregulation has gained increasing interest. By plotting cerebral oxygen saturation over blood pressure, clinicians can generate an index of autoregulation: the cerebral oximetry index (COx). Successful integration of this monitoring ability in daily critical care may allow clinicians to tailor blood pressure management to the individual patient’s need and might prove to be a major step forward in terms of patient outcome.

          Related collections

          Most cited references 43

          • Record: found
          • Abstract: found
          • Article: not found

          Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury.

          To define optimal cerebral perfusion pressure (CPPOPT) in individual head-injured patients using continuous monitoring of cerebrovascular pressure reactivity. To test the hypothesis that patients with poor outcome were managed at a cerebral perfusion pressure (CPP) differing more from their CPPOPT than were patients with good outcome. Retrospective analysis of prospectively collected data. Neurosciences critical care unit of a university hospital. A total of 114 head-injured patients admitted between January 1997 and August 2000 with continuous monitoring of mean arterial blood pressure (MAP) and intracranial pressure (ICP). MAP, ICP, and CPP were continuously recorded and a pressure reactivity index (PRx) was calculated online. PRx is the moving correlation coefficient recorded over 4-min periods between averaged values (6-sec periods) of MAP and ICP representing cerebrovascular pressure reactivity. When cerebrovascular reactivity is intact, PRx has negative or zero values, otherwise PRx is positive. Outcome was assessed at 6 months using the Glasgow Outcome Scale. A total of 13,633 hrs of data were recorded. CPPOPT was defined as the CPP where PRx reaches its minimum value when plotted against CPP. Identification of CPPOPT was possible in 68 patients (60%). In 22 patients (27%), CPPOPT was not found because it presumably lay outside the studied range of CPP. Patients' outcome correlated with the difference between CPP and CPPOPT for patients who were managed on average below CPPOPT (r =.53, p <.001) and for patients whose mean CPP was above CPPOPT (r = -.40, p <.05). CPPOPT could be identified in a majority of patients. Patients with a mean CPP close to CPPOPT were more likely to have a favorable outcome than those whose mean CPP was more different from CPPOPT. We propose use of the criterion of minimal achievable PRx to guide future trials of CPP oriented treatment in head injured patients.
            • Record: found
            • Abstract: found
            • Article: not found

            Fluctuating pressure-passivity is common in the cerebral circulation of sick premature infants.

            Cerebral blood flow pressure-passivity results when pressure autoregulation is impaired, or overwhelmed, and is thought to underlie cerebrovascular injury in the premature infant. Earlier bedside observations suggested that transient periods of cerebral pressure-passivity occurred in premature infants. However, these transient events cannot be detected reliably by intermittent static measurements of pressure autoregulation. We therefore used continuous bedside recordings of mean arterial pressure (MAP; from an indwelling arterial catheter) and cerebral perfusion [using the near-infrared spectroscopy (NIRS) Hb difference (HbD) signal) to detect cerebral pressure-passivity in the first 5 d after birth in infants with birth weight <1500 g. Because the Hb difference (HbD) signal [HbD = oxyhemoglobin (HbO2) - Hb] correlates with cerebral blood flow (CBF), we used coherence between MAP and HbD to define pressure-passivity. We measured the prevalence of pressure-passivity using a pressure-passive index (PPI), defined as the percentage of 10-min epochs with significant low-frequency coherence between the MAP and HbD signals. Pressure-passivity occurred in 87 of 90 premature infants, with a mean PPI of 20.3%. Cerebral pressure-passivity was significantly associated with low gestational age and birth weight, systemic hypotension, and maternal hemodynamic factors, but not with markers of maternal infection. Future studies using consistent serial brain imaging are needed to define the relationship between PPI and cerebrovascular injury in the sick premature infant.
              • Record: found
              • Abstract: found
              • Article: not found

              Monitoring of cerebrovascular autoregulation: facts, myths, and missing links.

              The methods for continuous assessment of cerebral autoregulation using correlation, phase shift, or transmission (either in time- or frequency-domain) were introduced a decade ago. They express dynamic relationships between slow waves of transcranial Doppler (TCD), blood flow velocity (FV) and cerebral perfusion pressure (CPP), or arterial pressure (ABP). We review a methodology and clinical application of indices useful for monitoring cerebral autoregulation and pressure-reactivity in various scenarios of neuro-critical care. Poor autoregulation and loss of pressure-reactivity are independent predictors of fatal outcome following head injury. Autoregulation is impaired by too low or too high CPP when compared to autoregulation with normal CPP (usually between 60 and 85 mmHg; and these limits are highly individual). Hemispheric asymmetry of the bi-laterally assessed autoregulation has been associated with asymmetry of CT scan findings: autoregulation was found to be worse ipsilateral to contusion or lateralized edema causing midline shift. The pressure-reactivity (PRx index) correlated with a state of low CBF and CMRO2 revealed using PET studies. The PRx is easier to monitor over prolonged periods of time than the TCD-based indices as it does not require fixation of external probes. Continuous monitoring with the PRx can be used to direct CPP-oriented therapy by determining the optimal CPP for pressure-reactivity. Autoregulation indices are able to reflect transient changes of autoregulation, as seen during plateau waves of ICP. However, minute-to-minute assessment of autoregulation has a poor signal-to-noise ratio. Averaging across time (30 min) or by combining with other relevant parameters improves the accuracy. MYTHS: It is debatable whether the TCD-based indices in head injured patients can be calculated using ABP instead of CPP. Thresholds for functional and disturbed autoregulation dramatically depends on arterial tension of CO2--therefore, comparison between patients cannot be performed without comparing their PaCO2. The TCD pulsatility index cannot accurately detect the lower limit of autoregulation. MISSING LINKS: We still do not know whether autoregulation-oriented therapy can be understood as a consensus between CPP-directed protocols and the Lund-concept. What are the links between endothelial function and autoregulation indices? Can autoregulation after head injury be improved with statins or EPO, as in subarachnoid hemorrhage? In conclusion, monitoring cerebral autoregulation can be used in a variety of clinical scenarios and may be helpful in delineating optimal therapeutic strategies.

                Author and article information

                F1000Research (London, UK )
                31 August 2017
                : 6
                [1 ]Department of Anesthesiology, Ghent University Hospital, Ghent, Belgium
                Author notes

                Competing interests: AM has received lecture fees from Medtronic (INVOS) and Sorin (NIRO). SD declares that he has no competing interests.

                Copyright: © 2017 Moerman A and De Hert S

                This is an open access article distributed under the terms of the Creative Commons Attribution Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                The author(s) declared that no grants were involved in supporting this work.
                Acute Cardiovascular Problems
                Cardiovascular Medicine in Anesthesia: Clinical Science
                Neurological Problems in Critical Care
                Neurosurgical Care after Anesthesia
                Pediatric Anesthesiology
                Pediatric Problems in Critical Care
                Perioperative Critical Care
                Technology & Monitoring in Anesthesiology

                oximetry, nirs, cerebral autoregulation


                Comment on this article