59
views
0
recommends
+1 Recommend
1 collections
    1
    shares

      Journal of Pain Research (submit here)

      This international, peer-reviewed Open Access journal by Dove Medical Press focuses on reporting of high-quality laboratory and clinical findings in all fields of pain research and the prevention and management of pain. Sign up for email alerts here.

      52,235 Monthly downloads/views I 2.832 Impact Factor I 4.5 CiteScore I 1.2 Source Normalized Impact per Paper (SNIP) I 0.655 Scimago Journal & Country Rank (SJR)

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non-invasive brain stimulation in chronic orofacial pain: a systematic review

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) are non-invasive brain stimulation techniques that are being explored as therapeutic alternatives for the management of various chronic pain conditions.

          Objective

          The primary objective of this systematic review is to assess the efficacy of TMS and tDCS in reducing clinical pain intensity in chronic orofacial pain (OFP) disorders. The secondary objectives are to describe adverse effects, duration of relief, and TMS/tDCS methodologies used in chronic OFP disorders.

          Methods

          A search was performed in MEDLINE, Embase, Web of Science, Scopus, and Google Scholar. Inclusion criteria were 1) population: adults diagnosed with chronic OFP including neuropathic and non-neuropathic disorders; 2) intervention: active TMS or tDCS stimulation regardless of the used protocol; 3) comparison: sham TMS or tDCS stimulation; and 4) outcome: primary outcome was patient reported pain intensity. Secondary outcomes were duration of pain relief, adverse effects, and methodological parameters. Risk of bias and quality of study reporting were also assessed.

          Results

          A total of 556 individual citations were identified by the search strategy, with 14 articles meeting selection criteria (TMS=11; tDCS=3). Data were obtained for a total of 228 patients. Included OFP disorders were trigeminal neuralgia, trigeminal neuropathy, burning mouth syndrome, atypical facial pain, and temporomandibular disorders. Significant pain reductions were obtained in both techniques. More number of sessions yielded to more durable effects. Overall, high risk of bias and poor study quality were found.

          Conclusion

          TMS and tDCS appear to be safe and promising alternatives to reduce pain intensity in different chronic OFP disorders. Additional research effort is needed to reduce bias, improve quality, and characterize optimal brain stimulation parameters to promote their efficacy.

          Most cited references52

          • Record: found
          • Abstract: found
          • Article: not found

          Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation.

          In this paper we demonstrate in the intact human the possibility of a non-invasive modulation of motor cortex excitability by the application of weak direct current through the scalp. Excitability changes of up to 40 %, revealed by transcranial magnetic stimulation, were accomplished and lasted for several minutes after the end of current stimulation. Excitation could be achieved selectively by anodal stimulation, and inhibition by cathodal stimulation. By varying the current intensity and duration, the strength and duration of the after-effects could be controlled. The effects were probably induced by modification of membrane polarisation. Functional alterations related to post-tetanic potentiation, short-term potentiation and processes similar to postexcitatory central inhibition are the likely candidates for the excitability changes after the end of stimulation. Transcranial electrical stimulation using weak current may thus be a promising tool to modulate cerebral excitability in a non-invasive, painless, reversible, selective and focal way.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Non-invasive magnetic stimulation of human motor cortex.

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The physiological basis of the effects of intermittent theta burst stimulation of the human motor cortex.

              Theta burst stimulation (TBS) is a form of repetitive transcranial magnetic stimulation (TMS). When applied to motor cortex it leads to after-effects on corticospinal and corticocortical excitability that may reflect LTP/LTD-like synaptic effects. An inhibitory form of TBS (continuous, cTBS) suppresses MEPs, and spinal epidural recordings show this is due to suppression of the I1 volley evoked by TMS. Here we investigate whether the excitatory form of TBS (intermittent, iTBS) affects the same I-wave circuitry. We recorded corticospinal volleys evoked by single pulse TMS of the motor cortex before and after iTBS in three conscious patients who had an electrode implanted in the cervical epidural space for the control of pain. As in healthy subjects, iTBS increased MEPs, and this was accompanied by a significant increase in the amplitude of later I-waves, but not the I1 wave. In two of the patients we tested the excitability of the contralateral cortex and found a significant suppression of the late I-waves. The extent of the changes varied between the three patients, as did their age. To investigate whether age might be a significant contributor to the variability we examined the effect of iTBS on MEPs in 18 healthy subjects. iTBS facilitated MEPs evoked by TMS of the conditioned hemisphere and suppressed MEPs evoked by stimulation of the contralateral hemisphere. There was a slight but non-significant decline in MEP facilitation with age, suggesting that interindividual variability was more important than age in explaining our data. In a subgroup of 10 subjects we found that iTBS had no effect on the duration of the ipsilateral silent period suggesting that the reduction in contralateral MEPs was not due to an increase in ongoing transcallosal inhibition. In conclusion, iTBS affects the excitability of excitatory synaptic inputs to pyramidal tract neurones that are recruited by a TMS pulse, both in the stimulated hemisphere and in the contralateral hemisphere. However the circuits affected differ from those influenced by the inhibitory, cTBS, protocol. The implication is that cTBS and iTBS may have different therapeutic targets.
                Bookmark

                Author and article information

                Journal
                J Pain Res
                J Pain Res
                Journal of Pain Research
                Journal of Pain Research
                Dove Medical Press
                1178-7090
                2018
                01 August 2018
                : 11
                : 1445-1457
                Affiliations
                [1 ]Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Université De Montreal, Montreal, QC, Canada, herre220@ 123456umn.edu
                [2 ]Division of TMD & Orofacial Pain, School of Dentistry, University of Minnesota, Minneapolis, MN, USA
                [3 ]Department of Neurology, Medical School, University of Minnesota, Minneapolis, MN, USA
                Author notes
                Correspondence: Alberto Herrero Babiloni, Research Center, Hôpital du Sacré-Coeur de Montréal, CIUSSS du Nord-de-l’Île-de-Montréal, Université De Montreal, 5400 Boul Gouin O, Montréal, QC H4J 1C5, Canada, Tel +1 514 338 2222, Fax +1 514 238 2531, Email herre220@ 123456umn.edu
                Article
                jpr-11-1445
                10.2147/JPR.S168705
                6078189
                30122975
                5ab30f78-15e6-4d00-a78d-9bd2d8818a6a
                © 2018 Herrero Babiloni et al. This work is published and licensed by Dove Medical Press Limited

                The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License ( http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed.

                History
                Categories
                Review

                Anesthesiology & Pain management
                transcranial magnetic stimulation,transcranial direct current stimulation,cortex,treatment,facial pain

                Comments

                Comment on this article