5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      All-trans retinoic acid modulates the retinoic acid receptor-alpha in promyelocytic cells.

      The Journal of clinical investigation
      Carrier Proteins, genetics, Cell Differentiation, drug effects, Gene Expression Regulation, Neoplastic, Humans, Leukemia, Promyelocytic, Acute, metabolism, pathology, Receptors, Retinoic Acid, Transcription, Genetic, Tretinoin, pharmacology, Tumor Cells, Cultured

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We have recently demonstrated that all-trans retinoic acid (RA), the active metabolite of vitamin A, is an efficient alternative to chemotherapy in the treatment of acute promyelocytic leukemia (AML3). We have further shown that, in these AML3 cells, the gene of the retinoic acid receptor-alpha (RAR alpha) is translocated from chromosome 17 to chromosome 15, and fused to a new gene, PLM. This results in the expression of both normal and chimeric RAR alpha transcripts in AML3 cells. The PLM-RAR alpha protein may account for the impairment of differentiation and thus leukemogenesis, but not for the paradoxical efficacy of RA in these cells. In an attempt to elucidate RA's differentiative effect in AML3 patients, the present work examined the in vitro and in vivo modulation of the normal RAR alpha transcripts by all-trans RA in seven cases of AML3. In all samples, Northern blot analysis revealed a low expression of the two normal RAR alpha transcripts compared with other human myeloid leukemic cells. No modulation was observed after 4-8 d of in vivo therapy with all-trans RA 45 mg/m2 per d. In vitro incubation with all-trans RA, however, increased the level of expression of the normal RAR alpha transcripts in AML3 cells but not in other AML leukemic subtypes. This modulation of the two normal RAR alpha transcripts appeared to be an early and primary event of RA's differentiating effect. We therefore suggest that up-regulation of the normal RAR alpha gene expression by pharmacological concentrations of all-trans RA may restore the normal differentiation pathway in these cells.

          Related collections

          Author and article information

          Comments

          Comment on this article