12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      CRISPR/Cas9 Epigenome Editing Potential for Rare Imprinting Diseases: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Imprinting diseases (IDs) are rare congenital disorders caused by aberrant dosages of imprinted genes. Rare IDs are comprised by a group of several distinct disorders that share a great deal of homology in terms of genetic etiologies and symptoms. Disruption of genetic or epigenetic mechanisms can cause issues with regulating the expression of imprinted genes, thus leading to disease. Genetic mutations affect the imprinted genes, duplications, deletions, and uniparental disomy (UPD) are reoccurring phenomena causing imprinting diseases. Epigenetic alterations on methylation marks in imprinting control centers (ICRs) also alters the expression patterns and the majority of patients with rare IDs carries intact but either silenced or overexpressed imprinted genes. Canonical CRISPR/Cas9 editing relying on double-stranded DNA break repair has little to offer in terms of therapeutics for rare IDs. Instead CRISPR/Cas9 can be used in a more sophisticated way by targeting the epigenome. Catalytically dead Cas9 (dCas9) tethered with effector enzymes such as DNA de- and methyltransferases and histone code editors in addition to systems such as CRISPRa and CRISPRi have been shown to have high epigenome editing efficiency in eukaryotic cells. This new era of CRISPR epigenome editors could arguably be a game-changer for curing and treating rare IDs by refined activation and silencing of disturbed imprinted gene expression. This review describes major CRISPR-based epigenome editors and points out their potential use in research and therapy of rare imprinting diseases.

          Related collections

          Most cited references120

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenome editing by a CRISPR/Cas9-based acetyltransferase activates genes from promoters and enhancers

          Technologies that facilitate the targeted manipulation of epigenetic marks could be used to precisely control cell phenotype or interrogate the relationship between the epigenome and transcriptional control. Here we have generated a programmable acetyltransferase based on the CRISPR/Cas9 gene regulation system, consisting of the nuclease-null dCas9 protein fused to the catalytic core of the human acetyltransferase p300. This fusion protein catalyzes acetylation of histone H3 lysine 27 at its target sites, corresponding with robust transcriptional activation of target genes from promoters, proximal enhancers, and distal enhancers. Gene activation by the targeted acetyltransferase is highly specific across the genome. In contrast to conventional dCas9-based activators, the acetyltransferase effectively activates genes from enhancer regions and with individual guide RNAs. The core p300 domain is also portable to other programmable DNA-binding proteins. These results support targeted acetylation as a causal mechanism of transactivation and provide a new robust tool for manipulating gene regulation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            CRISPR RNA-guided activation of endogenous human genes

            Catalytically inactive CRISPR-associated 9 nuclease (dCas9) can be directed by short guide RNAs (gRNAs) to repress endogenous genes in bacteria and human cells. Here we show that a dCas9-VP64 transcriptional activation domain fusion protein can be directed by single or multiple gRNAs to increase expression of specific endogenous human genes. These results provide an important proof-of-principle that CRISPR-Cas systems can be used to target heterologous effector domains in human cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Role of TET enzymes in DNA methylation, development, and cancer

              Ten eleven translocation (TET) genes, and especially TET2, are frequently mutated in various cancers, but how the TET proteins contribute to the onset and maintenance of these malignancies is largely unknown. In this review, Rasmussen and Helin highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. The pattern of DNA methylation at cytosine bases in the genome is tightly linked to gene expression, and DNA methylation abnormalities are often observed in diseases. The ten eleven translocation (TET) enzymes oxidize 5-methylcytosines (5mCs) and promote locus-specific reversal of DNA methylation. TET genes, and especially TET2 , are frequently mutated in various cancers, but how the TET proteins contribute to prevent the onset and maintenance of these malignancies is largely unknown. Here, we highlight recent advances in understanding the physiological function of the TET proteins and their role in regulating DNA methylation and transcription. In addition, we discuss some of the key outstanding questions in the field.
                Bookmark

                Author and article information

                Journal
                Cells
                Cells
                cells
                Cells
                MDPI
                2073-4409
                16 April 2020
                April 2020
                : 9
                : 4
                : 993
                Affiliations
                [1 ]Laboratory of Transgenic Models of Diseases, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
                [2 ]Czech Centre for Phenogenomics, Institute of Molecular Genetics of the CAS, v.v.i, 252 50 Vestec, Czech Republic
                Author notes
                [* ]Correspondence: Radislav.Sedlacek@ 123456img.cas.cz ; Tel.: +420-325-873-243
                [†]

                These authors contributed equally to this work.

                Article
                cells-09-00993
                10.3390/cells9040993
                7226972
                32316223
                5acc972a-3182-4196-be60-f95ce79bc53a
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 21 March 2020
                : 15 April 2020
                Categories
                Review

                rare disease,crispr/cas9,epigenome editing,transcriptome editing,genomic imprinting,angelman syndrome,prader-willi syndrome,transient neonatal diabetes mellitus,silver-russell syndrome

                Comments

                Comment on this article