16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A comprehensive repertoire of tRNA-derived fragments in prostate cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Prostate cancer (PCa) is the most common cancer among men in developed countries. Although its genetic background is thoroughly investigated, rather little is known about the role of small non-coding RNAs (sncRNA) in this disease. tRNA-derived fragments (tRFs) represent a new class of sncRNAs, which are present in a broad range of species and have been reported to play a role in several cellular processes. Here, we analyzed the expression of tRFs in fresh frozen patient samples derived from normal adjacent prostate and different stages of PCa by RNA-sequencing. We identified 598 unique tRFs, many of which are deregulated in cancer samples when compared to normal adjacent tissue. Most of the identified tRFs are derived from the 5’- and 3’-ends of mature cytosolic tRNAs, but we also found tRFs produced from other parts of tRNAs, including pre-tRNA trailers and leaders, as well as tRFs from mitochondrial tRNAs. The 5’-derived tRFs comprise the most abundant class of tRFs in general and represent the major class among upregulated tRFs. The 3’-derived tRFs types are dominant among downregulated tRFs in PCa. We validated the expression of three tRFs using qPCR. The ratio of tRFs derived from tRNA LysCTT and tRNA PheGAA emerged as a good indicator of progression-free survival and a candidate prognostic marker. This study provides a systematic catalogue of tRFs and their dysregulation in PCa and can serve as the basis for further research on the biomarker potential and functional roles of tRFs in this disease.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: not found

          tRNA cleavage is a conserved response to oxidative stress in eukaryotes.

          Recent results have identified a diversity of small RNAs in a wide range of organisms. In this work, we demonstrate that Saccharomyces cerevisiae contains a small RNA population consisting primarily of tRNA halves and rRNA fragments. Both 5' and 3' fragments of tRNAs are detectable by Northern blot analysis, suggesting a process of endonucleolytic cleavage. tRNA and rRNA fragment production in yeast is most pronounced during oxidative stress conditions, especially during entry into stationary phase. Similar tRNA fragments are also observed in human cell lines and in plants during oxidative stress. These results demonstrate that tRNA cleavage is a conserved aspect of the response to oxidative stress.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Post-transcriptional nucleotide modification and alternative folding of RNA

            Mark Helm (2006)
            Alternative foldings are an inherent property of RNA and a ubiquitous problem in scientific investigations. To a living organism, alternative foldings can be a blessing or a problem, and so nature has found both, ways to harness this property and ways to avoid the drawbacks. A simple and effective method employed by nature to avoid unwanted folding is the modulation of conformation space through post-transcriptional base modification. Modified nucleotides occur in almost all classes of natural RNAs in great chemical diversity. There are about 100 different base modifications known, which may perform a plethora of functions. The presumably most ancient and simple nucleotide modifications, such as methylations and uridine isomerization, are able to perform structural tasks on the most basic level, namely by blocking or reinforcing single base-pairs or even single hydrogen bonds in RNA. In this paper, functional, genomic and structural evidence on cases of folding space alteration by post-transcriptional modifications in native RNA are reviewed.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              tRFdb: a database for transfer RNA fragments

              We have created tRFdb, the first database of transfer RNA fragments (tRFs), available at http://genome.bioch.virginia.edu/trfdb/. With over 100 small RNA libraries analyzed, the database currently contains the sequences and read counts of the three classes of tRFs for eight species: R. sphaeroides, S. pombe, D. melanogaster, C. elegans, Xenopus, zebra fish, mouse and human, for a total of 12 877 tRFs. The database can be searched by tRF ID or tRF sequence, and the results can be limited by organism. The search results show the genome coordinates and names of the tRNAs the sequence may derive from, and there are links for the sequence of the tRF and parental tRNA, and links for the read counts in all the corresponding small RNA libraries. As a case study for how this database may be used, we have shown that a certain class of tRFs, tRF-1s, is highly upregulated in B-cell malignancies.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                26 April 2016
                23 March 2016
                : 7
                : 17
                : 24766-24777
                Affiliations
                1 Department of Urology, Erasmus MC, Rotterdam, The Netherlands
                2 Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere, Tampere, Finland
                3 Fimlab Laboratories, Tampere University Hospital, Tampere, Finland
                4 Current address: VIB Center for the Biology of Disease, KU Leuven, Leuven, Belgium
                5 Current address: Center for Human Genetics, KULeuven, Leuven, Belgium
                Author notes
                Correspondence to: Elena S. Martens-Uzunova, e.martens@ 123456erasmusmc.nl
                Article
                8293
                10.18632/oncotarget.8293
                5029740
                27015120
                5ad857a3-94c6-46b6-b230-ef8790790984
                Copyright: © 2016 Olvedy et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 4 September 2015
                : 2 March 2016
                Categories
                Research Paper

                Oncology & Radiotherapy
                trna-derived fragments (trfs),prostate cancer (pca),rna-sequencing,non-coding rna,biomarker

                Comments

                Comment on this article