+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Improving cancer immunotherapy by rationally combining oncolytic virus with modulators targeting key signaling pathways


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Oncolytic viruses (OVs) represent a new class of multi-modal immunotherapies for cancer, with OV-elicited antitumor immunity being key to their overall therapeutic efficacy. Currently, the clinical effectiveness of OV as monotherapy remains limited, and thus investigators have been exploring various combinations with other anti-cancer agents and demonstrated improved therapeutic efficacy. As cancer cells have evolved to alter key signaling pathways for enhanced cell proliferation, cancer progression and metastasis, these cellular and molecular changes offer promising targets for rational cancer therapy design. In this regard, key molecules in relevant signaling pathways for cancer cells or/and immune cells, such as EGFR-KRAS (e.g., KRAS G12C), PI3K-AKT-mTOR, ERK-MEK, JAK-STAT, p53, PD-1-PD-L1, and epigenetic, or immune pathways (e.g., histone deacetylases, cGAS-STING) are currently under investigation and have the potential to synergize with OV to modulate the immune milieu of the tumor microenvironment (TME), thereby improving and sustaining antitumor immunity. As many small molecule modulators of these signaling pathways have been developed and have shown strong therapeutic potential, here we review key findings related to both OV-mediated immunotherapy and the utility of small molecule modulators of signaling pathways in immuno-oncology. Then, we focus on discussion of the rationales and potential strategies for combining OV with selected modulators targeting key cellular signaling pathways in cancer or/and immune cells to modulate the TME and enhance antitumor immunity and therapeutic efficacy. Finally, we provide perspectives and viewpoints on the application of novel experimental systems and technologies that can propel this exciting branch of medicine into a bright future.

          Related collections

          Most cited references323

          • Record: found
          • Abstract: found
          • Article: not found

          Hallmarks of Cancer: New Dimensions

          The hallmarks of cancer conceptualization is a heuristic tool for distilling the vast complexity of cancer phenotypes and genotypes into a provisional set of underlying principles. As knowledge of cancer mechanisms has progressed, other facets of the disease have emerged as potential refinements. Herein, the prospect is raised that phenotypic plasticity and disrupted differentiation is a discrete hallmark capability, and that nonmutational epigenetic reprogramming and polymorphic microbiomes both constitute distinctive enabling characteristics that facilitate the acquisition of hallmark capabilities. Additionally, senescent cells, of varying origins, may be added to the roster of functionally important cell types in the tumor microenvironment. SIGNIFICANCE: Cancer is daunting in the breadth and scope of its diversity, spanning genetics, cell and tissue biology, pathology, and response to therapy. Ever more powerful experimental and computational tools and technologies are providing an avalanche of "big data" about the myriad manifestations of the diseases that cancer encompasses. The integrative concept embodied in the hallmarks of cancer is helping to distill this complexity into an increasingly logical science, and the provisional new dimensions presented in this perspective may add value to that endeavor, to more fully understand mechanisms of cancer development and malignant progression, and apply that knowledge to cancer medicine.
            • Record: found
            • Abstract: found
            • Article: not found

            The Emerging Hallmarks of Cancer Metabolism.

            Tumorigenesis is dependent on the reprogramming of cellular metabolism as both direct and indirect consequence of oncogenic mutations. A common feature of cancer cell metabolism is the ability to acquire necessary nutrients from a frequently nutrient-poor environment and utilize these nutrients to both maintain viability and build new biomass. The alterations in intracellular and extracellular metabolites that can accompany cancer-associated metabolic reprogramming have profound effects on gene expression, cellular differentiation, and the tumor microenvironment. In this Perspective, we have organized known cancer-associated metabolic changes into six hallmarks: (1) deregulated uptake of glucose and amino acids, (2) use of opportunistic modes of nutrient acquisition, (3) use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH production, (4) increased demand for nitrogen, (5) alterations in metabolite-driven gene regulation, and (6) metabolic interactions with the microenvironment. While few tumors display all six hallmarks, most display several. The specific hallmarks exhibited by an individual tumor may ultimately contribute to better tumor classification and aid in directing treatment.
              • Record: found
              • Abstract: found
              • Article: not found

              Fundamental Mechanisms of Immune Checkpoint Blockade Therapy

              Immune checkpoint blockade is able to induce durable responses across multiple types of cancer, which has enabled the oncology community to begin to envision potentially curative therapeutic approaches. However, the remarkable responses to immunotherapies are currently limited to a minority of patients and indications, highlighting the need for more effective and novel approaches. Indeed, an extraordinary amount of preclinical and clinical investigation is exploring the therapeutic potential of negative and positive costimulatory molecules. Insights into the underlying biological mechanisms and functions of these molecules have, however, lagged significantly behind. Such understanding will be essential for the rational design of next-generation immunotherapies. Here, we review the current state of our understanding of T-cell costimulatory mechanisms and checkpoint blockade, primarily of CTLA4 and PD-1, and highlight conceptual gaps in knowledge.Significance: This review provides an overview of immune checkpoint blockade therapy from a basic biology and immunologic perspective for the cancer research community. Cancer Discov; 8(9); 1069-86. ©2018 AACR.

                Author and article information

                Mol Cancer
                Mol Cancer
                Molecular Cancer
                BioMed Central (London )
                12 October 2022
                12 October 2022
                : 21
                : 196
                [1 ]GRID grid.478063.e, ISNI 0000 0004 0456 9819, UPMC Hillman Cancer Center, ; Pittsburgh, PA USA
                [2 ]GRID grid.21925.3d, ISNI 0000 0004 1936 9000, Department of Immunology, , University of Pittsburgh School of Medicine, ; Pittsburgh, PA USA
                [3 ]GRID grid.412636.4, ISNI 0000 0004 1757 9485, Department of Surgical Oncology and General Surgery, , The First Hospital of China Medical University, ; Shenyang, Liaoning China
                [4 ]GRID grid.240614.5, ISNI 0000 0001 2181 8635, Department of Immunology, Roswell Park Comprehensive Cancer Center, ; Buffalo, NY USA
                © The Author(s) 2022

                Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

                : 25 February 2022
                : 26 September 2022
                Custom metadata
                © The Author(s) 2022

                Oncology & Radiotherapy
                small molecule,inhibitor,signaling pathway,targeted therapy,combination regimen,oncolytic virus,antitumor immunity,efficacy,immuno-oncology


                Comment on this article