4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Perchlorate in Wet Deposition Across North America

      , , , , ,
      Environmental Science & Technology
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Natural perchlorate is believed to be of atmospheric origin, yet no systematic study has been conducted to evaluate perchlorate deposition rate and possible seasonal or spatial variations. This study evaluated perchlorate concentrations in weekly composite wet deposition samples acquired through the National Atmospheric Deposition Program from 26 sites across the continental United States, Alaska, and Puerto Rico for a 1-3 year period. Perchlorate concentrations varied from <5 ng/L to a high of 102 ng/L with a mean of 14.1 +/- 13.5 ng/L for the 1578 total samples. The annual perchlorate flux by site ranged from a low of 12.5 (TX) to 157 mg/ha-year (NE) and averaged 65 +/- 30 mg/ha-year for all sites. Perchlorate concentrations and flux in wet deposition were generally highest in May-August declining to lows in December-February. Average annual perchlorate flux was correlated (r > 0.5; p < 0.001) with Ca2+, K+, NH4+, NO3(-), Cl(-), and SO4(-2). Wet deposition rate of ClO4(-) in the conterminous United States (excluding Alaska, Hawaii, and Puerto Rico) while diffuse, represents a potential annual net mass flux of 51,000 kg, a value comparable to the estimated annual environmental releases from other known ClO4(-) sources.

          Related collections

          Author and article information

          Journal
          Environmental Science & Technology
          Environ. Sci. Technol.
          American Chemical Society (ACS)
          0013-936X
          1520-5851
          February 2009
          February 2009
          : 43
          : 3
          : 616-622
          Article
          10.1021/es801737u
          19244992
          5ad9b352-9e5f-4954-a873-7e71fe71fa02
          © 2009
          History

          Comments

          Comment on this article