31
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Calmodulin Binding Proteins and Alzheimer’s Disease

      review-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The small, calcium-sensor protein, calmodulin, is ubiquitously expressed and central to cell function in all cell types. Here the literature linking calmodulin to Alzheimer’s disease is reviewed. Several experimentally-verified calmodulin-binding proteins are involved in the formation of amyloid-β plaques including amyloid-β protein precursor, β-secretase, presenilin-1, and ADAM10. Many others possess potential calmodulin-binding domains that remain to be verified. Three calmodulin binding proteins are associated with the formation of neurofibrillary tangles: two kinases (CaMKII, CDK5) and one protein phosphatase (PP2B or calcineurin). Many of the genes recently identified by genome wide association studies and other studies encode proteins that contain putative calmodulin-binding domains but only a couple (e.g., APOE, BIN1) have been experimentally confirmed as calmodulin binding proteins. At least two receptors involved in calcium metabolism and linked to Alzheimer’s disease (mAchR; NMDAR) have also been identified as calmodulin-binding proteins. In addition to this, many proteins that are involved in other cellular events intimately associated with Alzheimer’s disease including calcium channel function, cholesterol metabolism, neuroinflammation, endocytosis, cell cycle events, and apoptosis have been tentatively or experimentally verified as calmodulin binding proteins. The use of calmodulin as a potential biomarker and as a therapeutic target is discussed.

          Related collections

          Most cited references110

          • Record: found
          • Abstract: found
          • Article: not found

          Inflammation and Alzheimer's disease.

          Inflammation clearly occurs in pathologically vulnerable regions of the Alzheimer's disease (AD) brain, and it does so with the full complexity of local peripheral inflammatory responses. In the periphery, degenerating tissue and the deposition of highly insoluble abnormal materials are classical stimulants of inflammation. Likewise, in the AD brain damaged neurons and neurites and highly insoluble amyloid beta peptide deposits and neurofibrillary tangles provide obvious stimuli for inflammation. Because these stimuli are discrete, microlocalized, and present from early preclinical to terminal stages of AD, local upregulation of complement, cytokines, acute phase reactants, and other inflammatory mediators is also discrete, microlocalized, and chronic. Cumulated over many years, direct and bystander damage from AD inflammatory mechanisms is likely to significantly exacerbate the very pathogenic processes that gave rise to it. Thus, animal models and clinical studies, although still in their infancy, strongly suggest that AD inflammation significantly contributes to AD pathogenesis. By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration.

            Cyclin-dependent kinase 5 (Cdk5) is required for proper development of the mammalian central nervous system. To be activated, Cdk5 has to associate with its regulatory subunit, p35. We have found that p25, a truncated form of p35, accumulates in neurons in the brains of patients with Alzheimer's disease. This accumulation correlates with an increase in Cdk5 kinase activity. Unlike p35, p25 is not readily degraded, and binding of p25 to Cdk5 constitutively activates Cdk5, changes its cellular location and alters its substrate specificity. In vivo the p25/Cdk5 complex hyperphosphorylates tau, which reduces tau's ability to associate with microtubules. Moreover, expression of the p25/Cdk5 complex in cultured primary neurons induces cytoskeletal disruption, morphological degeneration and apoptosis. These findings indicate that cleavage of p35, followed by accumulation of p25, may be involved in the pathogenesis of cytoskeletal abnormalities and neuronal death in neurodegenerative diseases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation.

              Abnormal hyperphosphorylation of tau is believed to lead to neurofibrillary degeneration in Alzheimer's disease (AD) and other tauopathies. Recent studies have shown that protein phosphatases (PPs) PP1, PP2A, PP2B and PP5 dephosphorylate tau in vitro, but the exact role of each of these phosphatases in the regulation of site-specific phosphorylation of tau in the human brain was unknown. Hence, we investigated the contributions of these PPs to the regulation of tau phosphorylation quantitatively. We found that these four phosphatases all dephosphorylated tau at Ser199, Ser202, Thr205, Thr212, Ser214, Ser235, Ser262, Ser396, Ser404 and Ser409, but with different efficiencies toward different sites. The K(m) values of tau dephosphorylation catalysed by PP1, PP2A and PP5 were 8-12 microm, similar to the intraneuronal tau concentration of human brain, whereas the K(m) of PP2B was fivefold higher. PP2A, PP1, PP5 and PP2B accounted for approximately 71%, approximately 11%, approximately 10% and approximately 7%, respectively, of the total tau phosphatase activity of human brain. The total phosphatase activity and the activities of PP2A and PP5 toward tau were significantly decreased, whereas that of PP2B was increased in AD brain. PP2A activity negatively correlated to the level of tau phosphorylation at the most phosphorylation sites in human brains. Our findings indicate that PP2A is the major tau phosphatase that regulates its phosphorylation at multiple sites in human brain. The abnormal hyperphosphorylation of tau is partially due to a downregulation of PP2A activity in AD brain.
                Bookmark

                Author and article information

                Contributors
                Role: Handling Associate Editor
                Journal
                J Alzheimers Dis
                J. Alzheimers Dis
                JAD
                Journal of Alzheimer's Disease
                IOS Press (Nieuwe Hemweg 6B, 1013 BG Amsterdam, The Netherlands )
                1387-2877
                1875-8908
                25 June 2015
                : 46
                : 3
                : 553-569
                Affiliations
                [a ]Department of Biology, University of Toronto at Mississauga, Mississauga, Ontario, Canada
                [b ]Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
                [c ]Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
                [d ]Center for Human Genetic Research, Richard B. Simches Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
                Author notes
                [* ]Correspondence to: Dr. Danton H. O’Day, Department of Biology, University of Toronto at Mississauga, 3359 Mississauga Road North, Mississauga, Ontario, L5L 1C6, Canada. Tel.: +1 905 847 3257; Fax: +1 905 828 3792; danton.oday@ 123456utoronto.ca
                Article
                JAD142772
                10.3233/JAD-142772
                4878311
                25812852
                5add1a36-bf27-487d-ab33-150771506f17
                IOS Press and the authors. All rights reserved

                This article is published online with Open Access and distributed under the terms of the Creative Commons Attribution Non-Commercial License.

                History
                : 6 March 2015
                Categories
                Review

                alzheimer’s disease,calcium,calcium channels,calmodulin,calmodulin binding proteins,cholesterol metabolism,endocytosis,genome wide association studies,neuroinflammation

                Comments

                Comment on this article