Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Renal Concentrating and Diluting Function in Deficiency of Specific Aquaporin Genes

      Cardiorenal Medicine

      S. Karger AG

      Water transport, Aquaporins, Urinary concentrating mechanism, Transgenic mouse

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Aquaporins (AQP) are water-transporting proteins expressed in many fluid-transporting epithelia and endothelia. In kidney, AQP1 is expressed in plasma membranes of proximal tubule, thin descending limb of Henle and descending vasa recta, AQP2 in collecting duct luminal membrane, AQP3 and AQP4 in collecting duct basolateral membrane, AQP6 in intercalated cells, and AQP7 in the S3 segment of proximal tubule. Human mutations in AQP2 cause hereditary non-X-linked nephrogenic diabetes insipidus. Transgenic mice lacking the renal aquaporins have been useful in defining their role. Mice deficient in AQP1 are polyuric and unable to form a concentrated urine because of defective proximal tubule fluid absorption and countercurrent multiplication. Mice lacking AQP3 are markedly polyuric due to low water permeability across the cortical and outer medullary collecting duct. However, mice lacking AQP4, which is expressed mainly in inner medullary collecting duct, manifest only a mild defect in maximum urinary concentrating ability. The aquaporin null mice have normal urinary diluting ability. From many renal and extrarenal phenotype studies of aquaporin null mice, we conclude that aquaporins are important for rapid near-isosmolar transepithelial fluid absorption/secretion and for rapid vectorial water movement driven by osmotic gradients. The renal phenotype in aquaporin null mice suggests the utility of aquaporin blockers as novel aquaretic-diuretic agents.

          Related collections

          Most cited references 7

          • Record: found
          • Abstract: found
          • Article: not found

          Defective secretion of saliva in transgenic mice lacking aquaporin-5 water channels.

          Aquaporin-5 (AQP5) is a water-selective transporting protein expressed in epithelial cells of serous acini in salivary gland. We generated AQP5 null mice by targeted gene disruption. The genotype distribution from intercross of founder AQP5 heterozygous mice was 70:69:29 wild-type:heterozygote:knockout, indicating impaired prenatal survival of the null mice. The knockout mice had grossly normal appearance, but grew approximately 20% slower than litter-matched wild-type mice when placed on solid food after weaning. Pilocarpine-stimulated saliva production was reduced by more than 60% in AQP5 knockout mice. Compared with the saliva from wild-type mice, the saliva from knockout mice was hypertonic (420 mosM) and dramatically more viscous. Amylase and protein secretion, functions of salivary mucous cells, were not affected by AQP5 deletion. Water channels AQP1 and AQP4 have also been localized to salivary gland; however, pilocarpine stimulation studies showed no defect in the volume or composition of saliva in AQP1 and AQP4 knockout mice. These results implicate a key role for AQP5 in saliva fluid secretion and provide direct evidence that high epithelial cell membrane water permeability is required for active, near-isosmolar fluid transport.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Severely impaired urinary concentrating ability in transgenic mice lacking aquaporin-1 water channels.

            Water channel aquaporin-1 (AQP1) is strongly expressed in kidney in proximal tubule and descending limb of Henle epithelia and in vasa recta endothelia. The grossly normal phenotype in human subjects deficient in AQP1 (Colton null blood group) and in AQP4 knockout mice has suggested that aquaporins (other than the vasopressin-regulated water channel AQP2) may not be important in mammalian physiology. We have generated transgenic mice lacking detectable AQP1 by targeted gene disruption. In kidney proximal tubule membrane vesicles from knockout mice, osmotic water permeability was reduced 8-fold compared with vesicles from wild-type mice. Although the knockout mice were grossly normal in terms of survival, physical appearance, and organ morphology, they became severely dehydrated and lethargic after water deprivation for 36 h. Body weight decreased by 35 +/- 2%, serum osmolality increased to >500 mOsm, and urinary osmolality (657 +/- 59 mOsm) did not change from that before water deprivation. In contrast, wild-type and heterozygous mice remained active after water deprivation, body weight decreased by 20-22%, serum osmolality remained normal (310-330 mOsm), and urine osmolality rose to >2500 mOsm. Urine [Na+] in water-deprived knockout mice was <10 mM, and urine osmolality was not increased by the V2 agonist DDAVP. The results suggest that AQP1 knockout mice are unable to create a hypertonic medullary interstitium by countercurrent multiplication. AQP1 is thus required for the formation of a concentrated urine by the kidney.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nephrogenic diabetes insipidus in mice lacking aquaporin-3 water channels.

              Aquaporin-3 (AQP3) is a water channel expressed at the basolateral plasma membrane of kidney collecting-duct epithelial cells. The mouse AQP3 cDNA was isolated and encodes a 292-amino acid water/glycerol-transporting glycoprotein expressed in kidney, large airways, eye, urinary bladder, skin, and gastrointestinal tract. The mouse AQP3 gene was analyzed, and AQP3 null mice were generated by targeted gene disruption. The growth and phenotype of AQP3 null mice were grossly normal except for polyuria. AQP3 deletion had little effect on AQP1 or AQP4 protein expression but decreased AQP2 protein expression particularly in renal cortex. Fluid consumption in AQP3 null mice was more than 10-fold greater than that in wild-type litter mates, and urine osmolality ( 1,200 milliosmol). After 1-desamino-8-d-arginine-vasopressin administration or water deprivation, the AQP3 null mice were able to concentrate their urine partially to approximately 30% of that in wild-type mice. Osmotic water permeability of cortical collecting-duct basolateral membrane, measured by a spatial filtering optics method, was >3-fold reduced by AQP3 deletion. To test the hypothesis that the residual concentrating ability of AQP3 null mice was due to the inner medullary collecting-duct water channel AQP4, AQP3/AQP4 double-knockout mice were generated. The double-knockout mice had greater impairment of urinary-concentrating ability than did the AQP3 single-knockout mice. Our findings establish a form of nephrogenic diabetes insipidus produced by impaired water permeability in collecting-duct basolateral membrane. Basolateral membrane aquaporins may thus provide blood-accessible targets for drug discovery of aquaretic inhibitors.
                Bookmark

                Author and article information

                Journal
                EXN
                Nephron Exp Nephrol
                10.1159/issn.1660-2129
                Cardiorenal Medicine
                S. Karger AG
                1660-2129
                2002
                2002
                27 June 2002
                : 10
                : 4
                : 235-240
                Affiliations
                Departments of Medicine and Physiology, Cardiovascular Research Institute, University of California, San Francisco, Calif., USA
                Article
                63697 Exp Nephrol 2002;10:235–240
                10.1159/000063697
                12097826
                © 2002 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 2, References: 15, Pages: 6
                Product
                Self URI (application/pdf): https://www.karger.com/Article/Pdf/63697
                Categories
                Minireview

                Comments

                Comment on this article