12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Contemporary human-altered landscapes and oceanic barriers reduce bumble bee gene flow

      Molecular Ecology

      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Much of the world's terrestrial landscapes are being altered by humans in the form of agriculture, urbanization and pastoral systems, with major implications for biodiversity. Bumble bees are one of the most effective pollinators in both natural and cultivated landscapes, but are often the first to be extirpated in human-altered habitats. Yet, little is known about the role of natural and human-altered habitats in promoting or limiting bumble bee gene flow. In this study, I closely examine the genetic structure of the yellow-faced bumble bee, Bombus vosnesenskii, across the southwestern US coast and find strong evidence that natural oceanic barriers, as well as contemporary human-altered habitats, limit bee gene flow. Heterozygosity and allelic richness were lower in island populations, while private allelic richness was higher in island populations compared to mainland populations. Genetic differentiation, measured for three indices across the 1000 km study region, was significantly greater than the null expectation (F(ST) = 0.041, F'(ST) = 0.044 and D(est) = 0.155) and correlated with geographic distance. Furthermore, genetic differentiation patterns were most strongly correlated with contemporary (2011) not past (2006, 2001) resistance maps calibrated for high dispersal limitation over oceans, impervious habitat and croplands. Despite the incorporation of dramatic elevation gradients, the analyses reveal that oceans and contemporary human land use, not mountains, are the primary dispersal barriers for B. vosnesenskii gene flow. These findings reinforce the importance of maintaining corridors of suitable habitat across the distribution range of native pollinators to promote their persistence and safeguard their ability to provide essential pollination services.

          Related collections

          Most cited references 64

          • Record: found
          • Abstract: found
          • Article: not found

          The matrix matters: effective isolation in fragmented landscapes.

           T Ricketts (2001)
          Traditional approaches to the study of fragmented landscapes invoke an island-ocean model and assume that the nonhabitat matrix surrounding remnant patches is uniform. Patch isolation, a crucial parameter to the predictions of island biogeography and metapopulation theories, is measured by distance alone. To test whether the type of interpatch matrix can contribute significantly to patch isolation, I conducted a mark-recapture study on a butterfly community inhabiting meadows in a naturally patchy landscape. I used maximum likelihood to estimate the relative resistances of the two major matrix types (willow thicket and conifer forest) to butterfly movement between meadow patches. For four of the six butterfly taxa (subfamilies or tribes) studied, conifer was 3-12 times more resistant than willow. For the two remaining taxa (the most vagile and least vagile in the community), resistance estimates for willow and conifer were not significantly different, indicating that responses to matrix differ even among closely related species. These results suggest that the surrounding matrix can significantly influence the "effective isolation" of habitat patches, rendering them more or less isolated than simple distance or classic models would indicate. Modification of the matrix may provide opportunities for reducing patch isolation and thus the extinction risk of populations in fragmented landscapes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Crop pollination from native bees at risk from agricultural intensification.

            Ecosystem services are critical to human survival; in selected cases, maintaining these services provides a powerful argument for conserving biodiversity. Yet, the ecological and economic underpinnings of most services are poorly understood, impeding their conservation and management. For centuries, farmers have imported colonies of European honey bees (Apis mellifera) to fields and orchards for pollination services. These colonies are becoming increasingly scarce, however, because of diseases, pesticides, and other impacts. Native bee communities also provide pollination services, but the amount they provide and how this varies with land management practices are unknown. Here, we document the individual species and aggregate community contributions of native bees to crop pollination, on farms that varied both in their proximity to natural habitat and management type (organic versus conventional). On organic farms near natural habitat, we found that native bee communities could provide full pollination services even for a crop with heavy pollination requirements (e.g., watermelon, Citrullus lanatus), without the intervention of managed honey bees. All other farms, however, experienced greatly reduced diversity and abundance of native bees, resulting in insufficient pollination services from native bees alone. We found that diversity was essential for sustaining the service, because of year-to-year variation in community composition. Continued degradation of the agro-natural landscape will destroy this "free" service, but conservation and restoration of bee habitat are potentially viable economic alternatives for reducing dependence on managed honey bees.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Decline and conservation of bumble bees.

              Declines in bumble bee species in the past 60 years are well documented in Europe, where they are driven primarily by habitat loss and declines in floral abundance and diversity resulting from agricultural intensification. Impacts of habitat degradation and fragmentation are likely to be compounded by the social nature of bumble bees and their largely monogamous breeding system, which renders their effective population size low. Hence, populations are susceptible to stochastic extinction events and inbreeding. In North America, catastrophic declines of some bumble bee species since the 1990s are probably attributable to the accidental introduction of a nonnative parasite from Europe, a result of global trade in domesticated bumble bee colonies used for pollination of greenhouse crops. Given the importance of bumble bees as pollinators of crops and wildflowers, steps must be taken to prevent further declines. Suggested measures include tight regulation of commercial bumble bee use and targeted use of environmentally comparable schemes to enhance floristic diversity in agricultural landscapes.
                Bookmark

                Author and article information

                Journal
                Molecular Ecology
                Mol Ecol
                Wiley-Blackwell
                09621083
                March 2015
                March 23 2015
                : 24
                : 5
                : 993-1006
                Article
                10.1111/mec.13090
                25626470
                © 2015

                Comments

                Comment on this article