Blog
About

33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      LPS-annotate: complete annotation of compositionally biased regions in the protein knowledgebase

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Compositional bias (i.e. a skew in the composition of a biological sequence towards a subset of residue types) can occur at a wide variety of scales, from compositional biases of whole genomes, down to short regions in individual protein and gene–DNA sequences that are compositionally biased (CB regions). Such CB regions are made from a subset of residue types that are strewn along the length of the region in an irregular way. Here, we have developed the database server LPS-annotate, for the analysis of such CB regions, and protein disorder in protein sequences. The algorithm defines compositional bias through a thorough search for lowest-probability subsequences (LPSs) (i.e., the least likely sequence regions in terms of composition). Users can (i) initially annotate CB regions in input protein or nucleotide sequences of interest, and then (ii) query a database of greater than 1 500 000 pre-calculated protein-CB regions, for investigation of further functional hypotheses and inferences, about the specific CB regions that were discovered, and their protein disorder propensities. We demonstrate how a user can search for CB regions of similar compositional bias and protein disorder, with a worked example. We show that our annotations substantially augment the CB-region annotations that already exist in the UniProt database, with more comprehensive annotation of more complex CB regions. Our analysis indicates tens of thousands of CB regions that do not comprise globular domains or transmembrane domains, and that do not have a propensity to protein disorder, indicating a large cohort of protein-CB regions of biophysically uncharacterized types. This server and database is a conceptually novel addition to the workbench of tools now available to molecular biologists to generate hypotheses and inferences about the proteins that they are investigating. It can be accessed at http://libaio.biol.mcgill.ca/lps-annotate.html.

          Database URL: http://libaio.biol.mcgill.ca/lps-annotate.html

          Related collections

          Most cited references 28

          • Record: found
          • Abstract: not found
          • Article: not found

          Gapped BLAST and PSI-BLAST: a new generation of protein database search programs.

          The BLAST programs are widely used tools for searching protein and DNA databases for sequence similarities. For protein comparisons, a variety of definitional, algorithmic and statistical refinements described here permits the execution time of the BLAST programs to be decreased substantially while enhancing their sensitivity to weak similarities. A new criterion for triggering the extension of word hits, combined with a new heuristic for generating gapped alignments, yields a gapped BLAST program that runs at approximately three times the speed of the original. In addition, a method is introduced for automatically combining statistically significant alignments produced by BLAST into a position-specific score matrix, and searching the database using this matrix. The resulting Position-Specific Iterated BLAST (PSI-BLAST) program runs at approximately the same speed per iteration as gapped BLAST, but in many cases is much more sensitive to weak but biologically relevant sequence similarities. PSI-BLAST is used to uncover several new and interesting members of the BRCT superfamily.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The Gene Ontology (GO) database and informatics resource.

            The Gene Ontology (GO) project (http://www. geneontology.org/) provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences. Many model organism databases and genome annotation groups use the GO and contribute their annotation sets to the GO resource. The GO database integrates the vocabularies and contributed annotations and provides full access to this information in several formats. Members of the GO Consortium continually work collectively, involving outside experts as needed, to expand and update the GO vocabularies. The GO Web resource also provides access to extensive documentation about the GO project and links to applications that use GO data for functional analyses.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              UniProt: the Universal Protein knowledgebase.

              To provide the scientific community with a single, centralized, authoritative resource for protein sequences and functional information, the Swiss-Prot, TrEMBL and PIR protein database activities have united to form the Universal Protein Knowledgebase (UniProt) consortium. Our mission is to provide a comprehensive, fully classified, richly and accurately annotated protein sequence knowledgebase, with extensive cross-references and query interfaces. The central database will have two sections, corresponding to the familiar Swiss-Prot (fully manually curated entries) and TrEMBL (enriched with automated classification, annotation and extensive cross-references). For convenient sequence searches, UniProt also provides several non-redundant sequence databases. The UniProt NREF (UniRef) databases provide representative subsets of the knowledgebase suitable for efficient searching. The comprehensive UniProt Archive (UniParc) is updated daily from many public source databases. The UniProt databases can be accessed online (http://www.uniprot.org) or downloaded in several formats (ftp://ftp.uniprot.org/pub). The scientific community is encouraged to submit data for inclusion in UniProt.
                Bookmark

                Author and article information

                Affiliations
                Department of Biology, McGill University, Stewart Biology Building, 1205 Dr. Penfield Ave., Montreal, QC, H3A 1B1, Canada
                Author notes
                *Corresponding author: Tel: +1 514 398 6420; Fax: +1 514 398 5069; Email: paul.harrison@123456mcgill.ca
                Journal
                Database (Oxford)
                database
                databa
                Database: The Journal of Biological Databases and Curation
                Oxford University Press
                1758-0463
                2011
                7 January 2011
                7 January 2011
                : 2011
                3017391
                21216786
                10.1093/database/baq031
                baq031
                © The Author(s) 2011. Published by Oxford University Press.

                This is Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/2.5), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                Counts
                Pages: 8
                Categories
                Original Article

                Bioinformatics & Computational biology

                Comments

                Comment on this article