228
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Genome-Wide Quantitative Analysis of Histone H3 Lysine 4 Trimethylation in Wild House Mouse Liver: Environmental Change Causes Epigenetic Plasticity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In mammals, exposure to toxic or disease-causing environments can change epigenetic marks that are inherited independently of the intrauterine environment. Such inheritance of molecular phenotypes may be adaptive. However, studies demonstrating molecular evidence for epigenetic inheritance have so far relied on extreme treatments, and are confined to inbred animals. We therefore investigated whether epigenomic changes could be detected after a non-drastic change in the environment of an outbred organism. We kept two populations of wild-caught house mice ( Mus musculus domesticus) for several generations in semi-natural enclosures on either standard diet and light cycle, or on an energy-enriched diet with longer daylight to simulate summer. As epigenetic marker for active chromatin we quantified genome-wide histone-3 lysine-4 trimethylation (H3K4me3) from liver samples by chromatin immunoprecipitation and high-throughput sequencing as well as by quantitative polymerase chain reaction. The treatment caused a significant increase of H3K4me3 at metabolic genes such as lipid and cholesterol regulators, monooxygenases, and a bile acid transporter. In addition, genes involved in immune processes, cell cycle, and transcription and translation processes were also differently marked. When we transferred young mice of both populations to cages and bred them under standard conditions, most of the H3K4me3 differences were lost. The few loci with stable H3K4me3 changes did not cluster in metabolic functional categories. This is, to our knowledge, the first quantitative study of an epigenetic marker in an outbred mammalian organism. We demonstrate genome-wide epigenetic plasticity in response to a realistic environmental stimulus. In contrast to disease models, the bulk of the epigenomic changes we observed were not heritable.

          Related collections

          Most cited references41

          • Record: found
          • Abstract: found
          • Article: not found

          Hypomethylation distinguishes genes of some human cancers from their normal counterparts.

          It has been suggested that cancer represents an alteration in DNA, heritable by progeny cells, that leads to abnormally regulated expression of normal cellular genes; DNA alterations such as mutations, rearrangements and changes in methylation have been proposed to have such a role. Because of increasing evidence that DNA methylation is important in gene expression (for review see refs 7, 9-11), several investigators have studied DNA methylation in animal tumours, transformed cells and leukaemia cells in culture. The results of these studies have varied; depending on the techniques and systems used, an increase, decrease, or no change in the degree of methylation has been reported. To our knowledge, however, primary human tumour tissues have not been used in such studies. We have now examined DNA methylation in human cancer with three considerations in mind: (1) the methylation pattern of specific genes, rather than total levels of methylation, was determined; (2) human cancers and adjacent analogous normal tissues, unconditioned by culture media, were analysed; and (3) the cancers were taken from patients who had received neither radiation nor chemotherapy. In four of five patients studied, representing two histological types of cancer, substantial hypomethylation was found in genes of cancer cells compared with their normal counterparts. This hypomethylation was progressive in a metastasis from one of the patients.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Charting histone modifications and the functional organization of mammalian genomes.

            A succession of technological advances over the past decade have enabled researchers to chart maps of histone modifications and related chromatin structures with increasing accuracy, comprehensiveness and throughput. The resulting data sets highlight the interplay between chromatin and genome function, dynamic variations in chromatin structure across cellular conditions, and emerging roles for large-scale domains and higher-ordered chromatin organization. Here we review a selection of recent studies that have probed histone modifications and successive layers of chromatin structure in mammalian genomes, the patterns that have been identified and future directions for research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Epigenetics for ecologists.

              There is now mounting evidence that heritable variation in ecologically relevant traits can be generated through a suite of epigenetic mechanisms, even in the absence of genetic variation. Moreover, recent studies indicate that epigenetic variation in natural populations can be independent from genetic variation, and that in some cases environmentally induced epigenetic changes may be inherited by future generations. These novel findings are potentially highly relevant to ecologists because they could significantly improve our understanding of the mechanisms underlying natural phenotypic variation and the responses of organisms to environmental change. To understand the full significance of epigenetic processes, however, it is imperative to study them in an ecological context. Ecologists should therefore start using a combination of experimental approaches borrowed from ecological genetics, novel techniques to analyse and manipulate epigenetic variation, and genomic tools, to investigate the extent and structure of epigenetic variation within and among natural populations, as well as the interrelations between epigenetic variation, phenotypic variation and ecological interactions.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                21 May 2014
                : 9
                : 5
                : e97568
                Affiliations
                [1 ]Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
                [2 ]Institute for Evolution and Ecology, University of Tübingen, Tübingen, Germany
                [3 ]Cologne Center for Genomics, University of Cologne, Köln, Germany
                Ludwig-Maximilians-Universität München, Germany
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: ABH IM. Performed the experiments: ABH IM KK. Analyzed the data: ABH BH. Wrote the paper: ABH BH. Wrote software used in analysis: BH.

                Article
                PONE-D-14-04253
                10.1371/journal.pone.0097568
                4029994
                24849289
                5b0d9256-e4b4-4a0f-91b2-434c9f6e7a69
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 31 January 2014
                : 17 April 2014
                Page count
                Pages: 14
                Funding
                This study was supported by the Max Planck Society, Germany. The funding agency had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Computational Biology
                Genome Analysis
                Gene Ontologies
                Gene Regulatory Networks
                Evolutionary Biology
                Evolutionary Processes
                Evolutionary Adaptation
                Genetics
                Epigenetics
                Histone Modification
                Gene Function
                Genomics
                Research and Analysis Methods
                Model Organisms
                Animal Models
                Mouse Models

                Uncategorized
                Uncategorized

                Comments

                Comment on this article