12
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Flagellar stators stimulate c-di-GMP production by Pseudomonas aeruginosa

      Preprint

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in Pseudomonas aeruginosa and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation. C-di-GMP levels regulate motility in P. aeruginosa in part by influencing the localization of its two flagellar stator sets, MotAB and MotCD. Here we show that just as c-di-GMP can influence the stators, stators can impact c-di-GMP levels. We demonstrate that the swarming motility-driving stator MotC physically interacts with the transmembrane region of the diguanylate cyclase SadC. Furthermore, we demonstrate that this interaction is capable of stimulating SadC activity. We propose a model by which the MotCD stator set interacts with SadC to stimulate c-di-GMP production in conditions not permissive to motility. This regulation implies a positive feedback loop in which c-di-GMP signaling events cause MotCD stators to disengage from the motor; then disengaged stators stimulate c-di-GMP production to reinforce a biofilm mode of growth. Our studies help define the bidirectional interactions between c-di-GMP and the motility machinery.

          Importance.

          The ability of bacterial cells to control motility during early steps in biofilm formation is critical for the transition to a non-motile, biofilm lifestyle. Recent studies have clearly demonstrated the ability of c-di-GMP to control motility via a number of mechanisms, including through controlling transcription of motility-related genes and modulating motor function. Here we provide evidence that motor components can in turn impact c-di-GMP levels. We propose that communication between motor components and c-di-GMP synthesis machinery allows the cell to have a robust and sensitive switching mechanism to control motility during early events in biofilm formation.

          Related collections

          Author and article information

          Journal
          bioRxiv
          November 29 2018
          Article
          10.1101/483339
          5b175013-066d-44c8-9707-f08cfbe12346
          © 2018
          History

          Microbiology & Virology
          Microbiology & Virology

          Comments

          Comment on this article