14
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Effects of Saikokaryukotsuboreito on Spermatogenesis and Fertility in Aging Male Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Aspermia caused by exogenous testosterone limit its usage in late-onset hypogonadism (LOH) patients desiring fertility. Saikokaryukotsuboreito (SKRBT) is reported to improve serum testosterone and relieve LOH-related symptoms. However, it is unclear whether SKRBT affects fertility. We aimed to examine the effects of SKRBT on spermatogenesis and fertility in aging male mice.

          Methods:

          Thirty aging male mice were randomly assigned to three groups. Mice were orally administered with phosphate-buffer solution or SKRBT (300 mg/kg, daily) or received testosterone by subcutaneous injections (10 mg/kg, every 3 days). Thirty days later, each male mouse was mated with two female mice. All animals were sacrificed at the end of 90 days. Intratesticular testosterone (ITT) levels, quality of sperm, expression of synaptonemal complex protein 3 (SYCP3), and fertility were assayed.

          Results:

          In the SKRBT-treated group, ITT, quality of sperm, and expression of SYCP3 were all improved compared with the control group (ITT: 85.50 ± 12.31 ng/g vs. 74.10 ± 11.45 ng/g, P = 0.027; sperm number: [14.94 ± 4.63] × 10 6 cells/ml vs. [8.79 ± 4.38] × 10 6 cells/ml, P = 0.002; sperm motility: 43.16 ± 9.93% vs. 33.51 ± 6.98%, P = 0.015; the number of SYCP3-positive cells/tubule: 77.50 ± 11.01 ng/ml vs. 49.30 ± 8.73 ng/ml, P < 0.001; the expression of SYCP3 protein: 1.23 ± 0.09 vs. 0.84 ± 0.10, P < 0.001), but fertility was not significantly changed ( P > 0.05, respectively). In the testosterone-treated group, ITT, quality of sperm, and expression of SYCP3 were markedly lower than the control group (ITT: 59.00 ± 8.67, P = 0.005; sperm number: [4.34 ± 2.45] × 10 6 cells/ml, P = 0.018; sperm motility: 19.53 ± 7.69%, P = 0.001; the number of SYCP3-positive cells/tubule: 30.00 ± 11.28, P < 0.001; the percentage of SYCP3-positive tubules/section 71.98 ± 8.88%, P = 0.001; the expression of SYCP3 protein: 0.71 ± 0.09, P < 0.001), and fertility was also suppressed ( P < 0.05, respectively).

          Conclusion:

          SKRBT had no adverse effect on fertility potential in aging male mice.

          Related collections

          Most cited references32

          • Record: found
          • Abstract: found
          • Article: not found

          Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study.

          We used longitudinal data from the Massachusetts Male Aging Study, a large population-based random-sample cohort of men aged 40-70 yr at baseline, to establish normative age trends for serum level of T and related hormones in middle-aged men and to test whether general health status affected the age trends. Of 1,709 men enrolled in 1987-1989, 1,156 were followed up 7-10 yr afterward. By repeated-measures statistical analysis, we estimated simultaneously the cross-sectional age trend of each hormone between subjects within the baseline data, the cross-sectional trend between subjects within the follow-up data, and the longitudinal trend within subjects between baseline and follow-up. Total T declined cross-sectionally at 0.8%/yr of age within the follow-up data, whereas both free and albumin-bound T declined at about 2%/yr, all significantly more steeply than within the baseline data. Sex hormone-binding globulin increased cross-sectionally at 1.6%/yr in the follow-up data, similarly to baseline. The longitudinal decline within subjects between baseline and follow-up was considerably steeper than the cross-sectional trend within measurement times for total T (1.6%/yr) and bioavailable T (2-3%/yr). Dehydroepiandrosterone, dehydroepiandrosterone sulfate, cortisol, and estrone showed significant longitudinal declines, whereas dihydrotestosterone, pituitary gonadotropins, and PRL rose longitudinally. Apparent good health, defined as absence of chronic illness, prescription medication, obesity, or excessive drinking, added 10-15% to the level of several androgens and attenuated the cross-sectional trends in T and LH but did not otherwise affect longitudinal or cross-sectional trends. The paradoxical finding that longitudinal age trends were steeper than cross-sectional trends suggests that incident poor health may accelerate the age-related decline in androgen levels.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Identification of late-onset hypogonadism in middle-aged and elderly men.

            The association between aging-related testosterone deficiency and late-onset hypogonadism in men remains a controversial concept. We sought evidence-based criteria for identifying late-onset hypogonadism in the general population on the basis of an association between symptoms and a low testosterone level. We surveyed a random population sample of 3369 men between the ages of 40 and 79 years at eight European centers. Using questionnaires, we collected data with regard to the subjects' general, sexual, physical, and psychological health. Levels of total testosterone were measured in morning blood samples by mass spectrometry, and free testosterone levels were calculated with the use of Vermeulen's formula. Data were randomly split into separate training and validation sets for confirmatory analyses. In the training set, symptoms of poor morning erection, low sexual desire, erectile dysfunction, inability to perform vigorous activity, depression, and fatigue were significantly related to the testosterone level. Increased probabilities of the three sexual symptoms and limited physical vigor were discernible with decreased testosterone levels (ranges, 8.0 to 13.0 nmol per liter [2.3 to 3.7 ng per milliliter] for total testosterone and 160 to 280 pmol per liter [46 to 81 pg per milliliter] for free testosterone). However, only the three sexual symptoms had a syndromic association with decreased testosterone levels. An inverse relationship between an increasing number of sexual symptoms and a decreasing testosterone level was observed. These relationships were independently confirmed in the validation set, in which the strengths of the association between symptoms and low testosterone levels determined the minimum criteria necessary to identify late-onset hypogonadism. Late-onset hypogonadism can be defined by the presence of at least three sexual symptoms associated with a total testosterone level of less than 11 nmol per liter (3.2 ng per milliliter) and a free testosterone level of less than 220 pmol per liter (64 pg per milliliter). 2010 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical review 1: Adverse effects of testosterone therapy in adult men: a systematic review and meta-analysis.

              The risks of testosterone therapy in men remain poorly understood. The aim of this study was to conduct a systematic review and meta-analyses of testosterone trials to evaluate the adverse effects of testosterone treatment in men. We searched MEDLINE, EMBASE, and Cochrane CENTRAL from 2003 through August 2008. Review of reference lists and contact with experts further identified candidate studies. Eligible studies were comparative, randomized, and nonrandomized and reported the effects of testosterone on outcomes of interest (death, cardiovascular events and risk factors, prostate outcomes, and erythrocytosis). Reviewers, working independently and in duplicate, determined study eligibility. Reviewers working independently and in duplicate determined the methodological quality of studies and collected descriptive, quality, and outcome data. The methodological quality of the 51 included studies varied from low to medium, and follow-up duration ranged from 3 months to 3 yr. Testosterone treatment was associated with a significant increase in hemoglobin [weighted mean difference (WMD), 0.80 g/dl; 95% confidence interval (CI), 0.45 to 1.14] and hematocrit (WMD, 3.18%; 95% CI, 1.35 to 5.01), and a decrease in high-density lipoprotein cholesterol (WMD, -0.49 mg/dl; 95% CI, -0.85 to -0.13). There was no significant effect on mortality, prostate, or cardiovascular outcomes. The adverse effects of testosterone therapy include an increase in hemoglobin and hematocrit and a small decrease in high-density lipoprotein cholesterol. These findings are of unknown clinical significance. Current evidence about the safety of testosterone treatment in men in terms of patient-important outcomes is of low quality and is hampered by the brief study follow-up.
                Bookmark

                Author and article information

                Journal
                Chin Med J (Engl)
                Chin. Med. J
                CMJ
                Chinese Medical Journal
                Medknow Publications & Media Pvt Ltd (India )
                0366-6999
                05 April 2016
                : 129
                : 7
                : 846-853
                Affiliations
                [1 ]Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China
                [2 ]Department of Dermatology, Guangdong Provincial Dermatology Hospital, Guangzhou, Guangdong 510091, China
                [3 ]Reproductive Medicine Centre and Guangdong Provincial Key Laboratory of Reproductive Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
                Author notes
                Address for correspondence: Dr. Zhi-Jun Zang, Department of Infertility and Sexual Medicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510630, China E-Mail: zangzhijun@ 123456163.com
                Article
                CMJ-129-846
                10.4103/0366-6999.178972
                4819307
                26996482
                5b1ea277-bcc6-4fbc-ac87-7f69c0d1f710
                Copyright: © 2016 Chinese Medical Journal

                This is an open access article distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as the author is credited and the new creations are licensed under the identical terms.

                History
                : 29 December 2015
                Categories
                Original Article

                late-onset hypogonadism,male mice,saikokaryukotsuboreito,spermatogenesis,testosterone synthesis

                Comments

                Comment on this article