23
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      PM2.5 inhalation induces intracranial atherosclerosis which may be ameliorated by omega 3 fatty acids

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Intracranial atherosclerosis (ICA) a major health problem. This study investigated whether inhalation of fine airborne particulate matters (PM2.5) causes ICA and whether omega-3 fatty acids (O3FA) attenuated the development of ICA.

          Results

          Twelve but not 6 week exposure significantly increased triglycerides (TG) in normal chow diet (NCD), while PM2.5 enhanced all lipid profiles (TG, low density lipoprotein (LDL) and cholesterol (CHO)) after both 6 and 12-week exposure with high-cholesterol diet (HCD). PM2.5 exposure for 12 but not 6 weeks significantly induced middle cerebral artery (MCA) narrowing and thickening, in association with the enhanced expression of inflammatory cytokines, (interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1), interferon gamma (IFN-γ)), vascular cell adhesion molecule 1 (VCAM-1) and inducible nitric oxide synthase (iNOS). O3FA significantly attenuated vascular alterations, even without favorable changes in lipid profiles, in association with reduced expression of IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS in brain vessels.

          Conclusions

          PM2.5 exposure for 12 weeks aggravates ICA in a dietary model (HCD + short-term L-NAME), which may be mediated by vascular inflammation. O3FA dietary supplementation prevents ICA development and inflammatory reaction in cerebral vessels.

          Methods

          Adult Sprague-Dawly rats were under filtered air (FA) or PM2.5 exposure with NCD or HCD for 6 or 12 weeks. Half of the HCD rats were treated with O3FA (5 mg/kg/day) by gavage. A total of 600 mg NG-nitro-L-arginine methyl ester (L-NAME, 3 mg/mL) per rat was administered over two weeks as supplementation in the HCD group. Blood lipids, including LDL, CHO, TG and high density lipoprotein (HDL), were measured at 6 and 12 weeks. ICA was determined by lumen diameter and thickness of the MCA. Inflammatory markers, IL-6, TNF-α, MCP-1, IFN-γ, VCAM-1 and iNOS were assessed by real-time PCR for mRNA and Western blot for protein expression.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Cardiovascular mortality and long-term exposure to particulate air pollution: epidemiological evidence of general pathophysiological pathways of disease.

          Epidemiologic studies have linked long-term exposure to fine particulate matter air pollution (PM) to broad cause-of-death mortality. Associations with specific cardiopulmonary diseases might be useful in exploring potential mechanistic pathways linking exposure and mortality. General pathophysiological pathways linking long-term PM exposure with mortality and expected patterns of PM mortality with specific causes of death were proposed a priori. Vital status, risk factor, and cause-of-death data, collected by the American Cancer Society as part of the Cancer Prevention II study, were linked with air pollution data from United States metropolitan areas. Cox Proportional Hazard regression models were used to estimate PM-mortality associations with specific causes of death. Long-term PM exposures were most strongly associated with mortality attributable to ischemic heart disease, dysrhythmias, heart failure, and cardiac arrest. For these cardiovascular causes of death, a 10-microg/m3 elevation in fine PM was associated with 8% to 18% increases in mortality risk, with comparable or larger risks being observed for smokers relative to nonsmokers. Mortality attributable to respiratory disease had relatively weak associations. Fine particulate air pollution is a risk factor for cause-specific cardiovascular disease mortality via mechanisms that likely include pulmonary and systemic inflammation, accelerated atherosclerosis, and altered cardiac autonomic function. Although smoking is a much larger risk factor for cardiovascular disease mortality, exposure to fine PM imposes additional effects that seem to be at least additive to if not synergistic with smoking.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A major role for VCAM-1, but not ICAM-1, in early atherosclerosis.

            VCAM-1 and ICAM-1 are endothelial adhesion molecules of the Ig gene superfamily that may participate in atherogenesis by promoting monocyte accumulation in the arterial intima. Both are expressed in regions predisposed to atherosclerosis and at the periphery of established lesions, while ICAM-1 is also expressed more broadly. To evaluate functions of VCAM-1 in chronic disease, we disrupted its fourth Ig domain, producing the murine Vcam1(D4D) allele. VCAM-1(D4D) mRNA and protein were reduced to 2-8% of wild-type allele (Vcam1(+)) levels but were sufficient to partially rescue the lethal phenotype of VCAM-1-null embryos. After crossing into the LDL receptor-null background, Vcam1(+/+) and Vcam1(D4D/D4D) paired littermates were generated from heterozygous intercrosses and fed a cholesterol-enriched diet for 8 weeks. The area of early atherosclerotic lesions in the aorta, quantified by en face oil red O staining, was reduced significantly in Vcam1(D4D/D4D) mice, although cholesterol levels, lipoprotein profiles, and numbers of circulating leukocytes were comparable to wild-type. In contrast, deficiency of ICAM-1 either alone or in combination with VCAM-1 deficiency did not alter nascent lesion formation. Therefore, although expression of both VCAM-1 and ICAM-1 is upregulated in atherosclerotic lesions, our data indicate that VCAM-1 plays a dominant role in the initiation of atherosclerosis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Long-term air pollution exposure and acceleration of atherosclerosis and vascular inflammation in an animal model.

              Recent studies have suggested a link between inhaled particulate matter exposure in urban areas and susceptibility to cardiovascular events; however, the precise mechanisms remain to be determined. To test the hypothesis that subchronic exposure to environmentally relevant particulate matter, even at low concentrations, potentiates atherosclerosis and alters vasomotor tone in a susceptible disease model. Between July 21, 2004, and January 12, 2005, 28 apolipoprotein E-/- (apoE-/-) mice were, based on randomized assignments, fed with normal chow or high-fat chow and exposed to concentrated ambient particles of less than 2.5 microm (PM2.5) or filtered air (FA) in Tuxedo, NY, for 6 hours per day, 5 days per week for a total of 6 months. Composite atherosclerotic plaque in the thoracic and abdominal aorta and vasomotor tone changes. In the high-fat chow group, the mean (SD) composite plaque area of PM2.5 vs FA was 41.5% (9.8%) vs 26.2% (8.6%), respectively (P<.001); and in the normal chow group, the composite plaque area was 19.2% (13.1%) vs 13.2% (8.1%), respectively (P = .15). Lipid content in the aortic arch measured by oil red-O staining revealed a 1.5-fold increase in mice fed the high-fat chow and exposed to PM2.5 vs FA (30.0 [8.2] vs 20.0 [7.0]; 95% confidence interval [CI], 1.21-1.83; P = .02). Vasoconstrictor responses to phenylephrine and serotonin challenge in the thoracic aorta of mice fed high-fat chow and exposed to PM2.5 were exaggerated compared with exposure to FA (mean [SE], 134.2% [5.2%] vs 100.9% [2.9%], for phenylephrine, and 156.0% [5.6%] vs 125.1% [7.5%], for serotonin; both P = .03); relaxation to the endothelium-dependent agonist acetylcholine was attenuated (mean [SE] of half-maximal dose for dilation, 8.9 [0.2] x 10(-8) vs 4.3 [0.1] x 10(-8), respectively; P = .04). Mice fed high-fat chow and exposed to PM2.5 demonstrated marked increases in macrophage infiltration, expression of the inducible isoform of nitric oxide synthase, increased generation of reactive oxygen species, and greater immunostaining for the protein nitration product 3-nitrotyrosine (all P<.001). In an apoE-/- mouse model, long-term exposure to low concentration of PM2.5 altered vasomotor tone, induced vascular inflammation, and potentiated atherosclerosis.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                9 January 2018
                16 December 2017
                : 9
                : 3
                : 3765-3778
                Affiliations
                1 China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
                2 Department of Neurosurgery, Wayne State University School of Medicine, Detroit, Michigan, USA
                3 Department of Neurology, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
                4 Department of General Surgery, Beijing Luhe Hospital, Capital Medical University, Tongzhou Qu, China
                Author notes
                Correspondence to: Xiaokun Geng, xgeng@ 123456ccmu.edu.cn
                Article
                23347
                10.18632/oncotarget.23347
                5790498
                29423081
                5b248d40-8cde-4931-b9f0-8bd86bd686d6
                Copyright: © 2018 Guan et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 5 October 2017
                : 26 November 2017
                Categories
                Research Paper

                Oncology & Radiotherapy
                high-cholesterol diet (hcd),ng-nitro-l-arginine methyl ester (l-name),brain,inflammation,air pollution

                Comments

                Comment on this article