17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An RNase P RNA subunit mutation affects ribosomal RNA processing.

      Nucleic Acids Research
      Base Sequence, Endoribonucleases, genetics, isolation & purification, metabolism, Molecular Sequence Data, Mutation, RNA Precursors, RNA Processing, Post-Transcriptional, RNA, Catalytic, RNA, Ribosomal, biosynthesis, RNA, Transfer, Ribonuclease P, Saccharomyces cerevisiae, enzymology, Substrate Specificity

      Read this article at

      ScienceOpenPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          RNase P is a ribonucleoprotein endoribonuclease responsible for the 5' maturation of precursor tRNAs in all organisms. While analyzing mutations in conserved positions of the yeast nuclear RNase P RNA subunit, significant accumulation of an aberrant RNA of approximately 193 nucleotides was observed. This abundant RNA was identified as a 3'extended form of the 5.8S rRNA. This strain also displays a slightly elevated level of other rRNA processing intermediates with 5-ends at processing site A2 in the internal transcribed spacer 1 (ITS1) region of the rRNA primary transcript. To test whether pre-rRNA in the region of ITS1/5.8S/ITS2 is a substrate for RNase P in vitro, nuclear RNase P was partially purified to remove contaminating nucleases. Cleavage assays were performed using an rRNA substrate transcribed in vitro which includes the 5.8S region and its surrounding processing sites in ITS1 and ITS2. Discrete cleavages of this rRNA substrate were coincident with the peak fractions of nuclear RNase P, but not with fractions corresponding to mitochondrial RNase P or ribonuclease MRP RNA. The cleavage activity is sensitive to treatment with micrococcal nuclease, also consistent with an activity attributable to RNase R The strong RNase P cleavage sites were mapped and their possible relationships to steps in the rRNA processing pathway are considered. These observations suggest an intimate relationship between the processes of tRNA and rRNA maturation in the eukaryotic nucleus.

          Related collections

          Author and article information

          Comments

          Comment on this article