15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      In Silico Mechanistic Profiling to Probe Small Molecule Binding to Sulfotransferases

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Drug metabolizing enzymes play a key role in the metabolism, elimination and detoxification of xenobiotics, drugs and endogenous molecules. While their principal role is to detoxify organisms by modifying compounds, such as pollutants or drugs, for a rapid excretion, in some cases they render their substrates more toxic thereby inducing severe side effects and adverse drug reactions, or their inhibition can lead to drug–drug interactions. We focus on sulfotransferases (SULTs), a family of phase II metabolizing enzymes, acting on a large number of drugs and hormones and showing important structural flexibility. Here we report a novel in silico structure-based approach to probe ligand binding to SULTs. We explored the flexibility of SULTs by molecular dynamics (MD) simulations in order to identify the most suitable multiple receptor conformations for ligand binding prediction. Then, we employed structure-based docking-scoring approach to predict ligand binding and finally we combined the predicted interaction energies by using a QSAR methodology. The results showed that our protocol successfully prioritizes potent binders for the studied here SULT1 isoforms, and give new insights on specific molecular mechanisms for diverse ligands’ binding related to their binding sites plasticity. Our best QSAR models, introducing predicted protein-ligand interaction energy by using docking, showed accuracy of 67.28%, 78.00% and 75.46%, for the isoforms SULT1A1, SULT1A3 and SULT1E1, respectively. To the best of our knowledge our protocol is the first in silico structure-based approach consisting of a protein-ligand interaction analysis at atomic level that considers both ligand and enzyme flexibility, along with a QSAR approach, to identify small molecules that can interact with II phase dug metabolizing enzymes.

          Related collections

          Most cited references47

          • Record: found
          • Abstract: found
          • Article: not found

          Generation of a set of simple, interpretable ADMET rules of thumb.

          M Gleeson (2008)
          A set of simple, consistent structure-property guides have been determined from an analysis of a number of key ADMET assays run within GSK: solubility, permeability, bioavailability, volume of distribution, plasma protein binding, CNS penetration, brain tissue binding, P-gp efflux, hERG inhibition, and cytochrome P450 1A2/2C9/2C19/2D6/3A4 inhibition. The rules have been formulated using molecular properties that chemists intuitively know how to alter in a molecule, namely, molecular weight, logP, and ionization state. The rules supplement the more predictive black-box models available to us by clearly illustrating the key underlying trends, which are in line with reports in the literature. It is clear from the analyses reported herein that almost all ADMET parameters deteriorate with either increasing molecular weight, logP, or both, with ionization state playing either a beneficial or detrimental affect depending on the parameter in question. This study re-emphasizes the need to focus on a lower molecular weight and logP area of physicochemical property space to obtain improved ADMET parameters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Human sulfotransferases and their role in chemical metabolism.

            Sulfonation is an important reaction in the metabolism of numerous xenobiotics, drugs, and endogenous compounds. A supergene family of enzymes called sulfotransferases (SULTs) catalyze this reaction. In most cases, the addition of a sulfonate moiety to a compound increases its water solubility and decreases its biological activity. However, many of these enzymes are also capable of bioactivating procarcinogens to reactive electrophiles. In humans three SULT families, SULT1, SULT2, and SULT4, have been identified that contain at least thirteen distinct members. SULTs have a wide tissue distribution and act as a major detoxification enzyme system in adult and the developing human fetus. Nine crystal structures of human cytosolic SULTs have now been determined, and together with site-directed mutagenesis experiments and molecular modeling, we are now beginning to understand the factors that govern distinct but overlapping substrate specificities. These studies have also provided insight into the enzyme kinetics and inhibition characteristics of these enzymes. The regulation of human SULTs remains as one of the least explored areas of research in the field, though there have been some recent advances on the molecular transcription mechanism controlling the individual SULT promoters. Interindividual variation in sulfonation capacity may be important in determining an individual's response to xenobiotics, and recent studies have begun to suggest roles for SULT polymorphism in disease susceptibility. This review aims to provide a summary of our present understanding of the function of human cytosolic sulfotransferases.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Implications of protein flexibility for drug discovery.

              Proteins are in constant motion between different conformational states with similar energies. This has often been ignored in drug design. However, protein flexibility is fundamental to understanding the ways in which drugs exert biological effects, their binding-site location, binding orientation, binding kinetics, metabolism and transport. Protein flexibility allows increased affinity to be achieved between a drug and its target. This is crucial, because the lipophilicity and number of polar interactions allowed for an oral drug is limited by absorption, distribution, metabolism and toxicology considerations.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                6 September 2013
                : 8
                : 9
                : e73587
                Affiliations
                [1 ]Université Paris Diderot, Sorbonne Paris Cité, Molécules Thérapeutiques In Silico, INSERM UMR-S 973, Paris, France
                [2 ]INSERM, U973, Paris, France
                [3 ]University Evry, iSSB, Évry, France
                [4 ]CNRS, iSSB, Évry, France
                Concordia University Wisconsin, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: MAM PC BOV. Performed the experiments: VYM GM PC. Analyzed the data: VYM DL. Contributed reagents/materials/analysis tools: DL. Wrote the manuscript: VYM PC BOV MAM.

                Article
                PONE-D-13-20883
                10.1371/journal.pone.0073587
                3765257
                24039991
                5b2cacef-ae8b-4701-ae18-0b421177703f
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 May 2013
                : 28 July 2013
                Funding
                V.Y.M. was supported by the doctoral school ‘MTCE’ at the Universities Paris Descartes and Paris Diderot. P.C. was supported by Genopole (ATIGE grant) and Agence Nationale de la Recherche. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article