102
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Relation between Speech-in-Noise Threshold, Hearing Loss and Cognition from 40–69 Years of Age

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Healthy hearing depends on sensitive ears and adequate brain processing. Essential aspects of both hearing and cognition decline with advancing age, but it is largely unknown how one influences the other. The current standard measure of hearing, the pure-tone audiogram is not very cognitively demanding and does not predict well the most important yet challenging use of hearing, listening to speech in noisy environments. We analysed data from UK Biobank that asked 40–69 year olds about their hearing, and assessed their ability on tests of speech-in-noise hearing and cognition.

          Methods and Findings

          About half a million volunteers were recruited through NHS registers. Respondents completed ‘whole-body’ testing in purpose-designed, community-based test centres across the UK. Objective hearing (spoken digit recognition in noise) and cognitive (reasoning, memory, processing speed) data were analysed using logistic and multiple regression methods. Speech hearing in noise declined exponentially with age for both sexes from about 50 years, differing from previous audiogram data that showed a more linear decline from <40 years for men, and consistently less hearing loss for women. The decline in speech-in-noise hearing was especially dramatic among those with lower cognitive scores. Decreasing cognitive ability and increasing age were both independently associated with decreasing ability to hear speech-in-noise (0.70 and 0.89 dB, respectively) among the population studied. Men subjectively reported up to 60% higher rates of difficulty hearing than women. Workplace noise history associated with difficulty in both subjective hearing and objective speech hearing in noise. Leisure noise history was associated with subjective, but not with objective difficulty hearing.

          Conclusions

          Older people have declining cognitive processing ability associated with reduced ability to hear speech in noise, measured by recognition of recorded spoken digits. Subjective reports of hearing difficulty generally show a higher prevalence than objective measures, suggesting that current objective methods could be extended further.

          Related collections

          Most cited references33

          • Record: found
          • Abstract: found
          • Article: not found

          Age-related cochlear synaptopathy: an early-onset contributor to auditory functional decline.

          Aging listeners experience greater difficulty understanding speech in adverse listening conditions and exhibit degraded temporal resolution, even when audiometric thresholds are normal. When threshold evidence for peripheral involvement is lacking, central and cognitive factors are often cited as underlying performance declines. However, previous work has uncovered widespread loss of cochlear afferent synapses and progressive cochlear nerve degeneration in noise-exposed ears with recovered thresholds and no hair cell loss (Kujawa and Liberman 2009). Here, we characterize age-related cochlear synaptic and neural degeneration in CBA/CaJ mice never exposed to high-level noise. Cochlear hair cell and neuronal function was assessed via distortion product otoacoustic emissions and auditory brainstem responses, respectively. Immunostained cochlear whole mounts and plastic-embedded sections were studied by confocal and conventional light microscopy to quantify hair cells, cochlear neurons, and synaptic structures, i.e., presynaptic ribbons and postsynaptic glutamate receptors. Cochlear synaptic loss progresses from youth (4 weeks) to old age (144 weeks) and is seen throughout the cochlea long before age-related changes in thresholds or hair cell counts. Cochlear nerve loss parallels the synaptic loss, after a delay of several months. Key functional clues to the synaptopathy are available in the neural response; these can be accessed noninvasively, enhancing the possibilities for translation to human clinical characterization.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Are individual differences in speech reception related to individual differences in cognitive ability? A survey of twenty experimental studies with normal and hearing-impaired adults.

            This paper summarizes twenty studies, published since 1989, that have measured experimentally the relationship between speech recognition in noise and some aspect of cognition, using statistical techniques such as correlation or factor analysis. The results demonstrate that there is a link, but it is secondary to the predictive effects of hearing loss, and it is somewhat mixed across study. No one cognitive test always gave a significant result, but measures of working memory (especially reading span) were mostly effective, whereas measures of general ability, such as IQ, were mostly ineffective. Some of the studies included aided listening, and two reported the benefits from aided listening: again mixed results were found, and in some circumstances cognition was a useful predictor of hearing-aid benefit.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Development of a quick speech-in-noise test for measuring signal-to-noise ratio loss in normal-hearing and hearing-impaired listeners.

              This paper describes a shortened and improved version of the Speech in Noise (SIN) Test (Etymotic Research, 1993). In the first two of four experiments, the level of a female talker relative to that of four-talker babble was adjusted sentence by sentence to produce 50% correct scores for normal-hearing subjects. In the second two experiments, those sentences-in-babble that produced either lack of equivalence or high across-subject variability in scores were discarded. These experiments produced 12 equivalent lists, each containing six sentences, with one sentence at each adjusted signal-to-noise ratio of 25, 20, 15, 10, 5, and 0 dB. Six additional lists were also made equivalent when the scores of particular pairs were averaged. The final lists comprise the "QuickSIN" test that measures the SNR a listener requires to understand 50% of key words in sentences in a background of babble. The standard deviation of single-list scores is 1.4 dB SNR for hearing-impaired subjects, based on test-retest data. A single QuickSIN list takes approximately one minute to administer and provides an estimate of SNR loss accurate to +/-2.7 dB at the 95% confidence level.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2014
                17 September 2014
                : 9
                : 9
                : e107720
                Affiliations
                [1 ]NIHR Nottingham Hearing Biomedical Research Unit, Nottingham, United Kingdom
                [2 ]MRC Institute of Hearing Research, University Park, Nottingham, United Kingdom
                [3 ]Cincinnati Children's Hospital Medical Center and Department of Otolaryngology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
                [4 ]Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
                [5 ]School of Psychological Sciences, University of Manchester, Manchester, United Kingdom
                [6 ]Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
                UNLV, United States of America
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: DRM. Analyzed the data: DRM MEJ PD KJM. Contributed reagents/materials/analysis tools: DRM MEJ PD. Wrote the paper: DRM MEJ PD HF AMC RHP KJM. Liaised with UK Biobank: DRM MEJ PD HF AMC RHP KJM.

                Article
                PONE-D-14-08188
                10.1371/journal.pone.0107720
                4168235
                25229622
                5b330f3a-927d-4250-b721-77cf7fe56d7a
                Copyright @ 2014

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 12 March 2014
                : 21 August 2014
                Page count
                Pages: 10
                Funding
                DRM was supported by the Intramural Programme of the Medical Research Council [Grant U135097130] and by Cincinnati Children's Hospital. The Nottingham Hearing Biomedical Research Unit is funded by the National Institute for Health Research. This paper presents independent research funded in part by the National Institute for Health Research (NIHR). The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health. This research was facilitated by the NIHR Manchester Biomedical Research Centre. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology and Life Sciences
                Neuroscience
                Cognitive Neuroscience
                Cognitive Neurology
                Medicine and Health Sciences
                Neurology
                Otorhinolaryngology
                Otology
                Audiology
                Hearing Disorders
                Public and Occupational Health
                Health Screening

                Uncategorized
                Uncategorized

                Comments

                Comment on this article