33
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Pyrosequencing reveals a shift in symbiotic bacteria populations across life stages of Bactrocera dorsalis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Bactrocera dorsalis is one of the most economically important fruit flies around the world. In this study, 454 pyrosequencing was used to identify the bacteria associated with different developmental stages of B. dorsalis. At ≥ 97% nucleotide similarity, total reads could be assigned to 172 Operational Taxonomic Units belonging to six phyla. Proteobacteria dominated in immature stages while Firmicutes dominated in adult stages. The most abundant families were Enterococcaceae and Comamondaceae. The genus Comamonas was most abundant in pupae whereas completely absent in adults. Some identified species had low sequence similarity to reported species indicating the possibility of novel taxa. However, a majority sequence reads were similar to sequences previously identified to be associated with Bactrocera correcta, suggesting a characteristic microbial fauna for this insect genus. The type and abundance of different bacterial groups varied across the life stages of B. dorsalis. Selection pressure exerted by the host insect as a result of its habitat and diet choices could be the reason for the observed shift in the bacteria groups. These findings increase our understanding of the intricate symbiotic relationships between bacteria and B. dorsalis and provide clues to develop potential biocontrol techniques against this fruit fly.

          Related collections

          Most cited references37

          • Record: found
          • Abstract: found
          • Article: not found

          The gut bacteria of insects: nonpathogenic interactions.

          The diversity of the Insecta is reflected in the large and varied microbial communities inhabiting the gut. Studies, particularly with termites and cockroaches, have focused on the nutritional contributions of gut bacteria in insects living on suboptimal diets. The indigenous gut bacteria, however, also play a role in withstanding the colonization of the gut by non-indigenous species including pathogens. Gut bacterial consortia adapt by the transfer of plasmids and transconjugation between bacterial strains, and some insect species provide ideal conditions for bacterial conjugation, which suggests that the gut is a "hot spot" for gene transfer. Genomic analysis provides new avenues for the study of the gut microbial community and will reveal the molecular foundations of the relationships between the insect and its microbiome. In this review the intestinal bacteria is discussed in the context of developing our understanding of symbiotic relationships, of multitrophic interactions between insects and plant or animal host, and in developing new strategies for controlling insect pests.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Wolbachia as a bacteriocyte-associated nutritional mutualist.

            Many insects are dependent on bacterial symbionts that provide essential nutrients (ex. aphid-Buchnera and tsetse-Wiglesworthia associations), wherein the symbionts are harbored in specific cells called bacteriocytes that constitute a symbiotic organ bacteriome. Facultative and parasitic bacterial symbionts like Wolbachia have been regarded as evolutionarily distinct from such obligate nutritional mutualists. However, we discovered that, in the bedbug Cimex lectularius, Wolbachia resides in a bacteriome and appears to be an obligate nutritional mutualist. Two bacterial symbionts, a Wolbachia strain and an unnamed gamma-proteobacterium, were identified from different strains of the bedbug. The Wolbachia symbiont was detected from all of the insects examined whereas the gamma-proteobacterium was found in a part of them. The Wolbachia symbiont was specifically localized in the bacteriomes and vertically transmitted via the somatic stem cell niche of germalia to oocytes, infecting the incipient symbiotic organ at an early stage of the embryogenesis. Elimination of the Wolbachia symbiont resulted in retarded growth and sterility of the host insect. These deficiencies were rescued by oral supplementation of B vitamins, confirming the essential nutritional role of the symbiont for the host. The estimated genome size of the Wolbachia symbiont was around 1.3 Mb, which was almost equivalent to the genome sizes of parasitic Wolbachia strains of other insects. These results indicate that bacteriocyte-associated nutritional mutualism can evolve from facultative and prevalent microbial associates like Wolbachia, highlighting a previously unknown aspect of the parasitism-mutualism evolutionary continuum.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Dynamic Gut Microbiome across Life History of the Malaria Mosquito Anopheles gambiae in Kenya

              The mosquito gut represents an ecosystem that accommodates a complex, intimately associated microbiome. It is increasingly clear that the gut microbiome influences a wide variety of host traits, such as fitness and immunity. Understanding the microbial community structure and its dynamics across mosquito life is a prerequisite for comprehending the symbiotic relationship between the mosquito and its gut microbial residents. Here we characterized gut bacterial communities across larvae, pupae and adults of Anopheles gambiae reared in semi-natural habitats in Kenya by pyrosequencing bacterial 16S rRNA fragments. Immatures and adults showed distinctive gut community structures. Photosynthetic Cyanobacteria were predominant in the larval and pupal guts while Proteobacteria and Bacteroidetes dominated the adult guts, with core taxa of Enterobacteriaceae and Flavobacteriaceae. At the adult stage, diet regime (sugar meal and blood meal) significantly affects the microbial structure. Intriguingly, blood meals drastically reduced the community diversity and favored enteric bacteria. Comparative genomic analysis revealed that the enriched enteric bacteria possess large genetic redox capacity of coping with oxidative and nitrosative stresses that are associated with the catabolism of blood meal, suggesting a beneficial role in maintaining gut redox homeostasis. Interestingly, gut community structure was similar in the adult stage between the field and laboratory mosquitoes, indicating that mosquito gut is a selective eco-environment for its microbiome. This comprehensive gut metatgenomic profile suggests a concerted symbiotic genetic association between gut inhabitants and host.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                30 March 2015
                2015
                : 5
                : 9470
                Affiliations
                [1 ]College of Plant Science & Technology, Huazhong Agricultural University , Wuhan 430070, China
                [2 ]Pest Control Division, National Agricultural Technology Extension and Service Center, Ministry of Agriculture , Beijing 100125, China
                [3 ]French National Institute for Agricultural Research (INRA) , UMR1355-ISA, 06903 Sophia-Antipolis, France
                [4 ]Department of Entomology, University of Kentucky , Lexington, KY 40546-0091, USA
                Author notes
                Article
                srep09470
                10.1038/srep09470
                5380164
                25822599
                5b3b81c2-5e26-4183-85ed-60d2ec9462aa
                Copyright © 2015, Macmillan Publishers Limited. All rights reserved

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder in order to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 23 October 2014
                : 04 March 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article