3
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A New Sensor for Methyl Paraben Using an Electrode Made of a Cellulose Nanocrystal–Reduced Graphene Oxide Nanocomposite

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A new cellulose nanocrystal–reduced graphene oxide (CNC–rGO) nanocomposite was successfully used for mediatorless electrochemical sensing of methyl paraben (MP). Fourier-transform infrared spectroscopy (FTIR) and field-emission scanning electron microscopy (FESEM) studies confirmed the formation of the CNC–rGO nanocomposite. Cyclic voltammetry (CV) studies of the nanocomposite showed quasi-reversible redox behavior. Differential pulse voltammetry (DPV) was employed for the sensor optimization. Under optimized conditions, the sensor demonstrated a linear calibration curve in the range of 2 × 10 −4–9 × 10 −4 M with a limit of detection (LOD) of 1 × 10 −4 M. The MP sensor showed good reproducibility with a relative standard deviation (RSD) of about 8.20%. The sensor also exhibited good stability and repeatability toward MP determinations. Analysis of MP in cream samples showed recovery percentages between 83% and 106%. Advantages of this sensor are the possibility for the determination of higher concentrations of MP when compared with most other reported sensors for MP. The CNC–rGO nanocomposite-based sensor also depicted good reproducibility and reusability compared to the rGO-based sensor. Furthermore, the CNC–rGO nanocomposite sensor showed good selectivity toward MP with little interference from easily oxidizable species such as ascorbic acid.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: not found
          • Article: not found

          Cellulose nanocrystals and related nanocomposites: Review of some properties and challenges

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Temperature dependence of graphene oxide reduced by hydrazine hydrate.

            Graphene oxide (GO) was successfully prepared by a modified Hummer's method. The reduction effect and mechanism of the as-prepared GO reduced with hydrazine hydrate at different temperatures and time were characterized by x-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FTIR), elemental analysis (EA), x-ray diffractions (XRD), Raman spectroscopy and thermo-gravimetric analysis (TGA). The results showed that the reduction effect of GO mainly depended on treatment temperature instead of treatment time. Desirable reduction of GO can only be obtained at high treatment temperature. Reduced at 95 °C for 3 h, the C/O atomic ratio of GO increased from 3.1 to 15.1, which was impossible to obtain at low temperatures, such as 80, 60 or 15 °C, even for longer reduction time. XPS, 13C NMR and FTIR results show that most of the epoxide groups bonded to graphite during the oxidation were removed from GO and form the sp(2) structure after being reduced by hydrazine hydrate at high temperature (>60 °C), leading to the electric conductivity of GO increasing from 1.5 × 10(-6) to 5 S cm(-1), while the hydroxyls on the surface of GO were not removed by hydrazine hydrate even at high temperature. Additionally, the FTIR, XRD and Raman spectrum indicate that the GO reduced by hydrazine hydrate can not be entirely restored to the pristine graphite structures. XPS and FTIR data also suggest that carbonyl and carboxyl groups can be reduced by hydrazine hydrate and possibly form hydrazone, but not a C = C structure.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Concentrations of parabens in human breast tumours.

              Parabens are used as preservatives in many thousands of cosmetic, food and pharmaceutical products to which the human population is exposed. Although recent reports of the oestrogenic properties of parabens have challenged current concepts of their toxicity in these consumer products, the question remains as to whether any of the parabens can accumulate intact in the body from the long-term, low-dose levels to which humans are exposed. Initial studies reported here show that parabens can be extracted from human breast tissue and detected by thin-layer chromatography. More detailed studies enabled identification and measurement of mean concentrations of individual parabens in samples of 20 human breast tumours by high-pressure liquid chromatography followed by tandem mass spectrometry. The mean concentration of parabens in these 20 human breast tumours was found to be 20.6 +/- 4.2 ng x g(-1) tissue. Comparison of individual parabens showed that methylparaben was present at the highest level (with a mean value of 12.8 +/- 2.2 ng x g(-1) tissue) and represents 62% of the total paraben recovered in the extractions. These studies demonstrate that parabens can be found intact in the human breast and this should open the way technically for more detailed information to be obtained on body burdens of parabens and in particular whether body burdens are different in cancer from those in normal tissues. Copyright 2004 John Wiley & Sons, Ltd.
                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                18 June 2019
                June 2019
                : 19
                : 12
                : 2726
                Affiliations
                [1 ]School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; wan_elina@ 123456uitm.edu.my
                [2 ]Faculty of Applied Sciences, Universiti Teknologi MARA Negeri Sembilan, Kuala Pilah Campus, Pekan Parit Tinggi, Kuala Pilah 72000, Negeri Sembilan, Malaysia
                [3 ]Forest Products Division, Forest Research Institute Malaysia, Selangor 52109, Malaysia; mnasir@ 123456frim.gov.my (M.N.M.A.); latifah@ 123456frim.gov.my (L.J.)
                Author notes
                [* ]Correspondence: leeyookheng@ 123456yahoo.co.uk ; Tel.: +603-89213356; Fax: +603-89215410
                Article
                sensors-19-02726
                10.3390/s19122726
                6630541
                31216625
                5b3f7f47-7d67-4fac-9c7b-12765737ba5c
                © 2019 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 03 April 2019
                : 05 June 2019
                Categories
                Article

                Biomedical engineering
                methyl paraben,cellulose nanocrystal,reduced graphene oxide,electrochemical sensor

                Comments

                Comment on this article