1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Abstract 4716: Targeting specific TGF-β isoforms in combination with radiation therapy leads to differential antitumor effects in mouse models of cancer

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background: TGF-β is a pleotropic cytokine, which has emerged as a potential target in cancer treatment due to its dual role in tumorigenesis and homeostasis. There are three isoforms of TGF-β (TGF-β1, TGF-β2 and TGF-β3), which are secreted by immune and nonimmune cells as a latent complex. Depending on the local context, TGF-β adopts opposing roles in carcinogensis and in modulating the immune system. These dueling roles of TGF-β are dependent on its secretion and activation. Local radiation therapy (RT) can activate TGF-β via reactive oxygen species. Such TGF-β expression is linked to radioresistance and dose-limiting toxicities, reducing the effectiveness of RT. In these studies, we aim to characterize the effect of RT on the temporal and cell-specific expression patterns of TGF-β isoforms in mouse tumor models. This will inform treatment regimens combining isoform specific anti-TGF-β therapy with RT.

          Methods: Fluorescence-activated cell sorting (FACS): C57BL/6 mice were implanted on the hind limb with B16-F10 melanoma cells. On day 10, tumors were irradiated locally with 15 Gy. Expression of TGF-β isoforms was measured at 1, 3 and 5 days post-RT by FACS. In vivo: C57BL/6 mice were implanted with tumors and irradiated as described. Mice were treated (10/group) with anti-TGF-β1, anti-TGF-β3 or a pan-TGF-β antibody beginning 1 day after RT given intraperitoneally (200 ug/mouse) every other day for 8 doses. Tumor growth and overall survival were monitored. A similar experiment was conducted in the 4T1 breast cancer model, in which mice were treated 1 day prior to radiation.

          Results: FACS data indicated that TGF-β1 and TGF-β3 expression increases on most immune cells in the tumor 1 day after RT, decreases 3 days after RT and reaches a peak 5 days after RT. Preliminary in vivo studies demonstrate that both αTGF-β1 and αTGF-β3 as monotherapies have activity against B16 melanoma. In combination with RT, αTGF-β3 shows greater antitumor activity compared to αTGF-β1 in melanoma. Similar observations were obtained in a 4T1 breast model; however, αTGF-β3 alone and in combination with RT as well as αTGF-β1 + RT showed a significant delay against tumor growth. No significant differences in survival were seen in either tumor model.

          Conclusions: TGF-β1 and TGF-β3 are expressed on numerous lymphoid and myeloid cells in B16 tumors and spleens. TGF-β isoform expression peaks 5 days post-RT. Anti-TGF-β therapy is effective in delaying tumor growth and may synergize with RT in certain cancers. This demonstrates rationale for the use of anti-TGF-β therapy to enhance the effectiveness of RT in cancer.

          Citation Format: Aditi Gupta, Sadna Budhu, Rachel Giese, Jacques van Snick, Catherine Uyttenhove, Gerd Ritter, Jedd Wolchok, Taha Merghoub. Targeting specific TGF-β isoforms in combination with radiation therapy leads to differential antitumor effects in mouse models of cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 4716.

          Related collections

          Author and article information

          Journal
          Cancer Research
          American Association for Cancer Research (AACR)
          0008-5472
          1538-7445
          July 01 2018
          July 01 2018
          : 78
          : 13_Supplement
          : 4716
          Article
          10.1158/1538-7445.AM2018-4716
          5b476ed4-9070-4ace-a648-0d0f24e73869
          © 2018
          History

          Quantitative & Systems biology,Biophysics
          Quantitative & Systems biology, Biophysics

          Comments

          Comment on this article