17
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Construction of a Nanodiamond–Tamoxifen Complex as a Breast Cancer Drug Delivery Vehicle

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          According to the World Health Organization, breast cancer represents 16% of all cancer cases in women and is the second most common cancer. In the past decades, the mortality among patients with metastasis breast cancer has been reduced significantly via drug delivery by means of nanodiamond therapies, which are both biocompatible and scalable. In this study, we determined a theoretical pathway for the construction of a nanodiamond–tamoxifen complex that will act as a drug delivery vehicle for targeting tumor tissues of breast cancer. The tamoxifen pharmacophore was defined and the binding zone was identified for the electrostatic interaction between tamoxifen and a functionalized site of a nanodiamond particle allowing for attachment of the payload (this drug) to the surface of the nanodiamond particle. In addition, an analysis of the intermolecular interaction between the nanodiamond and tamoxifen was conducted, showing three hydrogen bonds complying fully with Lipinski’s rule of five, which states that a compound should have five or fewer hydrogen bonds to be permeating and easily absorbed by the body (qualitative prediction). All calculations were performed using the conceptual Density Functional Theory with the M06 functional and the basis set 6-31G(d). The solvent effect has been taken into account by an implicit model, the conductor like polarizable continuum model.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: not found
          • Article: not found

          The Hydrogen Bond in the Solid State

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Optimization of parameters for semiempirical methods V: Modification of NDDO approximations and application to 70 elements

            Several modifications that have been made to the NDDO core-core interaction term and to the method of parameter optimization are described. These changes have resulted in a more complete parameter optimization, called PM6, which has, in turn, allowed 70 elements to be parameterized. The average unsigned error (AUE) between calculated and reference heats of formation for 4,492 species was 8.0 kcal mol−1. For the subset of 1,373 compounds involving only the elements H, C, N, O, F, P, S, Cl, and Br, the PM6 AUE was 4.4 kcal mol−1. The equivalent AUE for other methods were: RM1: 5.0, B3LYP 6–31G*: 5.2, PM5: 5.7, PM3: 6.3, HF 6–31G*: 7.4, and AM1: 10.0 kcal mol−1. Several long-standing faults in AM1 and PM3 have been corrected and significant improvements have been made in the prediction of geometries. Figure Calculated structure of the complex ion [Ta6Cl12]2+ (footnote): Reference value in parenthesis Electronic supplementary material The online version of this article (doi:10.1007/s00894-007-0233-4) contains supplementary material, which is available to authorized users.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The properties and applications of nanodiamonds.

              Nanodiamonds have excellent mechanical and optical properties, high surface areas and tunable surface structures. They are also non-toxic, which makes them well suited to biomedical applications. Here we review the synthesis, structure, properties, surface chemistry and phase transformations of individual nanodiamonds and clusters of nanodiamonds. In particular we discuss the rational control of the mechanical, chemical, electronic and optical properties of nanodiamonds through surface doping, interior doping and the introduction of functional groups. These little gems have a wide range of potential applications in tribology, drug delivery, bioimaging and tissue engineering, and also as protein mimics and a filler material for nanocomposites.
                Bookmark

                Author and article information

                Journal
                Journal of Nanomaterials
                Journal of Nanomaterials
                Hindawi Limited
                1687-4110
                1687-4129
                2016
                2016
                : 2016
                :
                : 1-9
                Article
                10.1155/2016/2682105
                5b4de9b5-b2f2-4eb4-a447-5cf01360c100
                © 2016

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article