5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cigarette smoke and electronic cigarettes differentially activate bronchial epithelial cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          The use of electronic cigarettes (ECIGs) is increasing, but the impact of ECIG-vapor on cellular processes like inflammation or host defense are less understood. The aim of the present study was to compare the acute effects of traditional cigarettes (TCIGs) and ECIG-exposure on host defense, inflammation, and cellular activation of cell lines and primary differentiated human airway epithelial cells (pHBE).

          Methods

          We exposed pHBEs and several cell lines to TCIG-smoke or ECIG-vapor. Epithelial host defense and barrier integrity were determined. The transcriptome of airway epithelial cells was compared by gene expression array analysis. Gene interaction networks were constructed and differential gene expression over all groups analyzed. The expression of several candidate genes was validated by qRT-PCR.

          Results

          Bacterial killing, barrier integrity and the expression of antimicrobial peptides were not affected by ECIG-vapor compared to control samples. In contrast, TCIGs negatively affected host defense and reduced barrier integrity in a significant way. Furthermore ECIG-exposure significantly induced IL-8 secretion from Calu-3 cells but had no effect on NCI-H292 or primary cells. The gene expression based on array analysis distinguished TCIG-exposed cells from ECIG and room air-exposed samples.

          Conclusion

          The transcriptome patterns of host defense and inflammatory genes are significantly distinct between ECIG-exposed and TCIG-treated cells. The overall effects of ECIGs on epithelial cells are less in comparison to TCIG, and ECIG-vapor does not affect host defense. Nevertheless, although acute exposure to ECIG-vapor induces inflammation, and the expression of S100 proteins, long term in vivo data is needed to evaluate the chronic effects of ECIG use.

          Related collections

          Most cited references53

          • Record: found
          • Abstract: found
          • Article: not found

          The danger model: a renewed sense of self.

          For over 50 years immunologists have based their thoughts, experiments, and clinical treatments on the idea that the immune system functions by making a distinction between self and nonself. Although this paradigm has often served us well, years of detailed examination have revealed a number of inherent problems. This Viewpoint outlines a model of immunity based on the idea that the immune system is more concerned with entities that do damage than with those that are foreign.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Chronic obstructive pulmonary disease

            Summary Chronic obstructive pulmonary disease (COPD) is characterised by progressive airflow obstruction that is only partly reversible, inflammation in the airways, and systemic effects or comorbities. The main cause is smoking tobacco, but other factors have been identified. Several pathobiological processes interact on a complex background of genetic determinants, lung growth, and environmental stimuli. The disease is further aggravated by exacerbations, particularly in patients with severe disease, up to 78% of which are due to bacterial infections, viral infections, or both. Comorbidities include ischaemic heart disease, diabetes, and lung cancer. Bronchodilators constitute the mainstay of treatment: β2 agonists and long-acting anticholinergic agents are frequently used (the former often with inhaled corticosteroids). Besides improving symptoms, these treatments are also thought to lead to some degree of disease modification. Future research should be directed towards the development of agents that notably affect the course of disease.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              RAGE mediates a novel proinflammatory axis: a central cell surface receptor for S100/calgranulin polypeptides.

              S100/calgranulin polypeptides are present at sites of inflammation, likely released by inflammatory cells targeted to such loci by a range of environmental cues. We report here that receptor for AGE (RAGE) is a central cell surface receptor for EN-RAGE (extracellular newly identified RAGE-binding protein) and related members of the S100/calgranulin superfamily. Interaction of EN-RAGEs with cellular RAGE on endothelium, mononuclear phagocytes, and lymphocytes triggers cellular activation, with generation of key proinflammatory mediators. Blockade of EN-RAGE/RAGE quenches delayed-type hypersensitivity and inflammatory colitis in murine models by arresting activation of central signaling pathways and expression of inflammatory gene mediators. These data highlight a novel paradigm in inflammation and identify roles for EN-RAGEs and RAGE in chronic cellular activation and tissue injury.
                Bookmark

                Author and article information

                Contributors
                christian.herr@uks.eu
                Journal
                Respir Res
                Respir. Res
                Respiratory Research
                BioMed Central (London )
                1465-9921
                1465-993X
                12 March 2020
                12 March 2020
                2020
                : 21
                : 67
                Affiliations
                [1 ]GRID grid.11749.3a, ISNI 0000 0001 2167 7588, Department of Internal Medicine V – Pulmonology, Allergology and Critical Care Medicine, , Saarland University, ; D-66421 Homburg, Germany
                [2 ]GRID grid.11749.3a, ISNI 0000 0001 2167 7588, Clinical Bioinformatics, , Saarland University, University Hospital, ; 66123 Saarbrücken, Germany
                [3 ]GRID grid.24516.34, ISNI 0000000123704535, Department of Clinical Laboratory, Shanghai Tongji Hospital, , Tongji University School of Medicine, ; Shanghai, 200065 China
                [4 ]GRID grid.7429.8, ISNI 0000000121866389, Sorbonne Universités, , UPMC Univ Paris 06, INSERM, Centre de Recherche Saint-Antoine (CRSA), ; 75012 Paris, France
                Author information
                http://orcid.org/0000-0001-9422-6569
                Article
                1317
                10.1186/s12931-020-1317-2
                7068890
                32164736
                5b5146ba-4252-4c47-86de-f17859e73586
                © The Author(s). 2020

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 25 September 2019
                : 10 February 2020
                Categories
                Research
                Custom metadata
                © The Author(s) 2020

                Respiratory medicine
                Respiratory medicine

                Comments

                Comment on this article