16
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      Publish your biodiversity research with us!

      Submit your article here.

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Combining live and lethal trapping to inform the management of alien invasive rodent populations in a tropical montane forest

      , , , ,
      NeoBiota
      Pensoft Publishers

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          On large inhabited islands where complete eradication of alien invasive rodents through the use of poison delivery is often not practical or acceptable, mechanical trapping may represent the only viable option to reduce their impact in areas of high biodiversity value. However, the feasibility of sustained rodent control by trapping remains uncertain under realistic operational constraints. This study aimed to assess the effectiveness of non-toxic rat control strategies through a combination of lethal and live-trapping experiments, and scenario modelling, using the example of a remote montane rainforest of New Caledonia. Rat densities, estimated with spatially-explicit capture-recapture models, fluctuated seasonally (9.5–33.6 ind.ha-1). Capture probability (.01–.25) and home range sizes (HR95, .23–.75 ha) varied greatly according to trapping session, age class, sex and species. Controlling rats through the use of lethal trapping allowed maintaining rat densities at ca. 8 ind.ha-1 over a seven-month period in a 5.5-ha montane forest. Simulation models based on field parameter estimates over a 200-ha pilot management area indicated that without any financial and social constraints, trapping grids with the finest mesh sizes achieved cumulative capture probabilities > .90 after 15 trapping days, but were difficult to implement and sustain with the local workforce. We evaluated the costs and effectiveness of alternative trapping strategies taking into account the prevailing set of local constraints, and identified those that were likely to be successful. Scenario modelling, informed by trapping experiments, is a flexible tool for informing the design of sustainable control programs of island-invasive rodent populations, under idiosyncratic local circumstances.

          Related collections

          Most cited references46

          • Record: found
          • Abstract: not found
          • Article: not found

          Human Domination of Earth's Ecosystems

            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Regression and time series model selection in small samples

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Spatially explicit maximum likelihood methods for capture-recapture studies.

              Live-trapping capture-recapture studies of animal populations with fixed trap locations inevitably have a spatial component: animals close to traps are more likely to be caught than those far away. This is not addressed in conventional closed-population estimates of abundance and without the spatial component, rigorous estimates of density cannot be obtained. We propose new, flexible capture-recapture models that use the capture locations to estimate animal locations and spatially referenced capture probability. The models are likelihood-based and hence allow use of Akaike's information criterion or other likelihood-based methods of model selection. Density is an explicit parameter, and the evaluation of its dependence on spatial or temporal covariates is therefore straightforward. Additional (nonspatial) variation in capture probability may be modeled as in conventional capture-recapture. The method is tested by simulation, using a model in which capture probability depends only on location relative to traps. Point estimators are found to be unbiased and standard error estimators almost unbiased. The method is used to estimate the density of Red-eyed Vireos (Vireo olivaceus) from mist-netting data from the Patuxent Research Refuge, Maryland, U.S.A. Estimates agree well with those from an existing spatially explicit method based on inverse prediction. A variety of additional spatially explicit models are fitted; these include models with temporal stratification, behavioral response, and heterogeneous animal home ranges.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                Journal
                NeoBiota
                NB
                Pensoft Publishers
                1314-2488
                1619-0033
                December 08 2020
                December 08 2020
                : 63
                : 101-125
                Article
                10.3897/neobiota.63.53811
                5b52e907-8991-4e67-bb7d-f9c3947b0ff3
                © 2020

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article