7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Influence of sources of dietary oils on the life span of stroke-prone spontaneously hypertensive rats.

      Lipids
      Animals, Brain Chemistry, Cholesterol, administration & dosage, analogs & derivatives, analysis, Dietary Fats, Unsaturated, pharmacology, Fatty Acids, Fatty Acids, Monounsaturated, Hypertension, mortality, Liver, chemistry, Phytosterols, Rats, Rats, Inbred SHR, Sitosterols, Stroke, Survival Rate, Thiobarbituric Acid Reactive Substances, Vitamin E

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          In recent studies, the life span of stroke-prone spontaneously hypertensive (SHRSP) rats was altered by a variety of dietary fats. It was relatively shorter in rats fed canola oil as the sole source of fat. The present study was performed to find out whether the fatty acid profile and the high content of sulfur compounds in canola oil could modulate the life span of SHRSP rats. SHRSP rats (47 d old, n = 23/group) were matched by body weight and systolic blood pressure and fed semipurified diets containing 10% canola oil, high-palmitic canola oil, low-sulfur canola oil, soybean oil, high-oleic safflower oil, a fat blend that mimicked the fatty acid composition of canola oil, or a fat blend high in saturated fatty acids. A 1% sodium chloride solution was used as drinking water to induce hypertension. After consuming the diets for 37 d, five rats from each dietary group were killed for collection of blood and tissue samples for biochemical analysis. The 18 remaining animals from each group were used for determining their life span. The mean survival time of SHRSP rats fed canola oil (87.4+/-4.0 d) was not significantly different (P > 0.05) from those fed low-sulfur canola oil (89.7+/-8.5 d), suggesting that content of sulfur in canola oil has no effect on the life span of SHRSP rats. The SHRSP rats fed the noncanola oil-based diets lived longer (mean survival time difference was 6-13 d, P < 0.05) than those fed canola and low-sulfur canola oils. No marked differences in the survival times were observed among the noncanola oil-based groups. The fatty acid composition of the dietary oils and of red blood cells and liver of SHRSP rats killed after 37 d of treatment showed no relationship with the survival times. These results suggest that the fatty acid profile of vegetable oils plays no important role on the life span of SHRSP rat. However, phytosterols in the dietary oils and in liver and brain were inversely correlated with the mean survival times,indicating that the differential effects of vegetable oils might be ascribed, at least partly, to their different phytosterol contents.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: not found
          • Article: not found

          Dietary phytosterols: A review of metabolism, benefits and side effects

            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Increased sodium-lithium countertransport in red cells of patients with essential hypertension.

            This paper describes experiments showing that one of the pathways of sodium transport across the red-cell membrane, sodium-lithium countertransport, is faster in patients with essential hypertension than in control subjects. This transport system accepts only sodium or lithium and is not inhibited by ouabain. The maximum rate of transport shows inherited differences. The mean maximum rate of sodium-lithium countertransport was found to be 0.55 +/- 0.02 (mean +/- S.E.M.) mmol (liter of red cells X hour)(-1) in a group of 36 patients with essential hypertension and 0.24 +/- 0.02 in 26 control subjects (P less than 0.001). The first-degree relatives of eight patients with essential hypertension and 10 control subjects had mean maximum rates of sodium-lithium countertransport of 0.54 +/- 0.05 and 0.23 +/- 0.02, respectively. Five patients with secondary hypertension had normal mean maximum rates of sodium-lithium countertransport. The relation between heritability of red-cell sodium-lithium countertransport and essential hypertension should be investigated further.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Unusual effects of some vegetable oils on the survival time of stroke-prone spontaneously hypertensive rats.

              Preliminary experiments have shown that a diet containing 10% rapeseed oil (low-erucic acid) markedly shortens the survival time of stroke-prone spontaneously hypertensive (SHRSP) rats under 1% NaCl loading as compared with diets containing perilla oil or soybean oil. High-oleate safflower oil and high-oleate sunflower oil were found to have survival time-shortening activities comparable to that of rapeseed oil; olive oil had slightly less activity. A mixture was made of soybean oil, perilla oil, and triolein partially purified from high-oleate sunflower oil to adjust the fatty acid composition to that of rapeseed oil. The survival time of this triolein/mixed oil group was between those of the rapeseed oil and soybean oil groups. When 1% NaCl was replaced with tap water, the survival time was prolonged by approximately 80%. Under these conditions, the rapeseed oil and evening primrose oil shortened the survival time by approximately 40% as compared with n-3 fatty acid-rich perilla and fish oil; lard, soybean oil, and safflower oil with relatively high n-6/n-3 ratios shortened the survival time by roughly 10%. The observed unusual survival time-shortening activities of some vegetable oils (rapeseed, high-oleate safflower, high-oleate sunflower, olive, and evening primrose oil) may not be due to their unique fatty acid compositions, but these results suggest that these vegetable oils contain factor(s) which are detrimental to SHRSP rats.
                Bookmark

                Author and article information

                Comments

                Comment on this article