722
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Discovery and Development of Selective Estrogen Receptor Modulators (SERMs) for Clinical Practice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Selective estrogen receptor modulators (SERMs) are structurally different compounds that interact with intracellular estrogen receptors in target organs as estrogen receptor agonists or antagonists. These drugs have been intensively studied over the past decade and have proven to be a highly versatile group for the treatment of different conditions associated with postmenopausal women’s health, including hormone responsive cancer and osteoporosis. Tamoxifen, a failed contraceptive is currently used to treat all stages of breast cancer, chemoprevention in women at high risk for breast cancer and also has beneficial effects on bone mineral density and serum lipids in postmenopausal women. Raloxifene, a failed breast cancer drug, is the only SERM approved internationally for the prevention and treatment of postmenopausal osteoporosis and vertebral fractures. However, although these SERMs have many benefits, they also have some potentially serious adverse effects, such as thromboembolic disorders and, in the case of tamoxifen, uterine cancer. These adverse effects represent a major concern given that long-term therapy is required to prevent osteoporosis or prevent and treat breast cancer.

          The search for the ‘ideal’ SERM, which would have estrogenic effects on bone and serum lipids, neutral effects on the uterus, and antiestrogenic effects on breast tissue, but none of the adverse effects associated with current therapies, is currently under way. Ospemifene, lasofoxifene, bazedoxifene and arzoxifene, which are new SERM molecules with potentially greater efficacy and potency than previous SERMs, have been investigated for use in the treatment and prevention of osteoporosis. These drugs have been shown to be comparably effective to conventional hormone replacement therapy in animal models, with potential indications for an improved safety profile. Clinical efficacy data from ongoing phase III trials are available or are awaited for each SERM so that a true understanding of the therapeutic potential of these compounds can be obtained.

          In this article, we describe the discovery and development of the group of medicines called SERMs. The newer SERMs in late development: ospemifene, lasofoxifene, bazedoxifene, are arzoxifene are described in detail.

          Related collections

          Most cited references215

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta.

          The rat estrogen receptor (ER) exists as two subtypes, ER alpha and ER beta, which differ in the C-terminal ligand binding domain and in the N-terminal transactivation domain. In this study we investigated the messenger RNA expression of both ER subtypes in rat tissues by RT-PCR and compared the ligand binding specificity of the ER subtypes. Saturation ligand binding analysis of in vitro synthesized human ER alpha and rat ER beta protein revealed a single binding component for 16 alpha-iodo-17 beta-estradiol with high affinity [dissociation constant (Kd) = 0.1 nM for ER alpha protein and 0.4 nM for ER beta protein]. Most estrogenic substances or estrogenic antagonists compete with 16 alpha-[125I]iodo-17 beta-estradiol for binding to both ER subtypes in a very similar preference and degree; that is, diethylstilbestrol > hexestrol > dienestrol > 4-OH-tamoxifen > 17 beta-estradiol > coumestrol, ICI-164384 > estrone, 17 alpha-estradiol > nafoxidine, moxestrol > clomifene > estriol, 4-OH-estradiol > tamoxifen, 2-OH-estradiol, 5-androstene-3 beta, 17 beta-diol, genistein for the ER alpha protein and dienestrol > 4-OH-tamoxifen > diethylstilbestrol > hexestrol > coumestrol, ICI-164384 > 17 beta-estradiol > estrone, genistein > estriol > nafoxidine, 5-androstene-3 beta, 17 beta-diol > 17 alpha-estradiol, clomifene, 2-OH-estradiol > 4-OH-estradiol, tamoxifen, moxestrol for the ER beta protein. The rat tissue distribution and/or the relative level of ER alpha and ER beta expression seems to be quite different, i.e. moderate to high expression in uterus, testis, pituitary, ovary, kidney, epididymis, and adrenal for ER alpha and prostate, ovary, lung, bladder, brain, uterus, and testis for ER beta. The described differences between the ER subtypes in relative ligand binding affinity and tissue distribution could contribute to the selective action of ER agonists and antagonists in different tissues.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial.

            Tamoxifen is approved for the reduction of breast cancer risk, and raloxifene has demonstrated a reduced risk of breast cancer in trials of older women with osteoporosis. To compare the relative effects and safety of raloxifene and tamoxifen on the risk of developing invasive breast cancer and other disease outcomes. The National Surgical Adjuvant Breast and Bowel Project Study of Tamoxifen and Raloxifene trial, a prospective, double-blind, randomized clinical trial conducted beginning July 1, 1999, in nearly 200 clinical centers throughout North America, with final analysis initiated after at least 327 incident invasive breast cancers were diagnosed. Patients were 19,747 postmenopausal women of mean age 58.5 years with increased 5-year breast cancer risk (mean risk, 4.03% [SD, 2.17%]). Data reported are based on a cutoff date of December 31, 2005. Oral tamoxifen (20 mg/d) or raloxifene (60 mg/d) over 5 years. Incidence of invasive breast cancer, uterine cancer, noninvasive breast cancer, bone fractures, thromboembolic events. There were 163 cases of invasive breast cancer in women assigned to tamoxifen and 168 in those assigned to raloxifene (incidence, 4.30 per 1000 vs 4.41 per 1000; risk ratio [RR], 1.02; 95% confidence interval [CI], 0.82-1.28). There were fewer cases of noninvasive breast cancer in the tamoxifen group (57 cases) than in the raloxifene group (80 cases) (incidence, 1.51 vs 2.11 per 1000; RR, 1.40; 95% CI, 0.98-2.00). There were 36 cases of uterine cancer with tamoxifen and 23 with raloxifene (RR, 0.62; 95% CI, 0.35-1.08). No differences were found for other invasive cancer sites, for ischemic heart disease events, or for stroke. Thromboembolic events occurred less often in the raloxifene group (RR, 0.70; 95% CI, 0.54-0.91). The number of osteoporotic fractures in the groups was similar. There were fewer cataracts (RR, 0.79; 95% CI, 0.68-0.92) and cataract surgeries (RR, 0.82; 95% CI, 0.68-0.99) in the women taking raloxifene. There was no difference in the total number of deaths (101 vs 96 for tamoxifen vs raloxifene) or in causes of death. Raloxifene is as effective as tamoxifen in reducing the risk of invasive breast cancer and has a lower risk of thromboembolic events and cataracts but a nonstatistically significant higher risk of noninvasive breast cancer. The risk of other cancers, fractures, ischemic heart disease, and stroke is similar for both drugs. clinicaltrials.gov Identifier: NCT00003906.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Cofactor dynamics and sufficiency in estrogen receptor-regulated transcription.

              Many cofactors bind the hormone-activated estrogen receptor (ER), yet the specific regulators of endogenous ER-mediated gene transcription are unknown. Using chromatin immunoprecipitation (ChIP), we find that ER and a number of coactivators rapidly associate with estrogen responsive promoters following estrogen treatment in a cyclic fashion that is not predicted by current models of hormone activation. Cycles of ER complex assembly are followed by transcription. In contrast, the anti-estrogen tamoxifen (TAM) recruits corepressors but not coactivators. Using a genetic approach, we show that recruitment of the p160 class of coactivators is sufficient for gene activation and for the growth stimulatory actions of estrogen in breast cancer supporting a model in which ER cofactors play unique roles in estrogen signaling.
                Bookmark

                Author and article information

                Journal
                Curr Clin Pharmacol
                Curr Clin Pharmacol
                CCP
                Current Clinical Pharmacology
                Bentham Science Publishers
                1574-8847
                2212-3938
                May 2013
                May 2013
                : 8
                : 2
                : 135-155
                Affiliations
                [1 ]Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd NW, Research Building, Suite E204A, Washington, DC 20057, USA
                [2 ]Division of Hematology and Oncology, Georgetown University Medical Center, 3970 Reservoir Rd NW, Washington, DC 20057, USA
                Author notes
                [* ]Address correspondence to this author at the Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, 3970 Reservoir Rd NW, Research Building, Suite E204A, Washington, DC 20057, USA; Tel: 202.687.3207; Fax: 202.687.7505; E-mail: vcj2@ 123456georgetown.edu
                Article
                CCP-8-135
                10.2174/1574884711308020006
                3624793
                23062036
                5b729c4a-1656-4667-8c68-c3c5367169d5
                © 2013 Bentham Science Publishers

                This is an open access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 1 March 2012
                : 11 July 2012
                : 3 October 2012
                Categories
                Article

                Pharmacology & Pharmaceutical medicine
                arzoxifene,bazedoxifene,lasofoxifene,ospemifene,raloxifene,selective estrogen receptor modulator,tamoxifen.

                Comments

                Comment on this article