4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of BK Channels by Beta and Gamma Subunits

      1 , 1
      Annual Review of Physiology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Ca 2+- and voltage-gated K + channels of large conductance (BK channels) are expressed in a diverse variety of both excitable and inexcitable cells, with functional properties presumably uniquely calibrated for the cells in which they are found. Although some diversity in BK channel function, localization, and regulation apparently arises from cell-specific alternative splice variants of the single pore–forming α subunit ( KCa1.1, Kcnma1, Slo1) gene, two families of regulatory subunits, β and γ, define BK channels that span a diverse range of functional properties. We are just beginning to unravel the cell-specific, physiological roles served by BK channels of different subunit composition.

          Related collections

          Most cited references157

          • Record: found
          • Abstract: found
          • Article: not found

          Relaxation of arterial smooth muscle by calcium sparks.

          Local increases in intracellular calcium ion concentration ([Ca2+]i) resulting from activation of the ryanodine-sensitive calcium-release channel in the sarcoplasmic reticulum (SR) of smooth muscle cause arterial dilation. Ryanodine-sensitive, spontaneous local increases in [Ca2+]i (Ca2+ sparks) from the SR were observed just under the surface membrane of single smooth muscle cells from myogenic cerebral arteries. Ryanodine and thapsigargin inhibited Ca2+ sparks and Ca(2+)-dependent potassium (KCa) currents, suggesting that Ca2+ sparks activate KCa channels. Furthermore, KCa channels activated by Ca2+ sparks appeared to hyperpolarize and dilate pressurized myogenic arteries because ryanodine and thapsigargin depolarized and constricted these arteries to an extent similar to that produced by blockers of KCa channels. Ca2+ sparks indirectly cause vasodilation through activation of KCa channels, but have little direct effect on spatially averaged [Ca2+]i, which regulates contraction.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Coupling between Voltage Sensor Activation, Ca2+ Binding and Channel Opening in Large Conductance (BK) Potassium Channels

            To determine how intracellular Ca2+ and membrane voltage regulate the gating of large conductance Ca2+-activated K+ (BK) channels, we examined the steady-state and kinetic properties of mSlo1 ionic and gating currents in the presence and absence of Ca2+ over a wide range of voltage. The activation of unliganded mSlo1 channels can be accounted for by allosteric coupling between voltage sensor activation and the closed (C) to open (O) conformational change (Horrigan, F.T., and R.W. Aldrich. 1999. J. Gen. Physiol. 114:305–336; Horrigan, F.T., J. Cui, and R.W. Aldrich. 1999. J. Gen. Physiol. 114:277–304). In 0 Ca2+, the steady-state gating charge-voltage (QSS-V) relationship is shallower and shifted to more negative voltages than the conductance-voltage (GK-V) relationship. Calcium alters the relationship between Q-V and G-V, shifting both to more negative voltages such that they almost superimpose in 70 μM Ca2+. This change reflects a differential effect of Ca2+ on voltage sensor activation and channel opening. Ca2+ has only a small effect on the fast component of ON gating current, indicating that Ca2+ binding has little effect on voltage sensor activation when channels are closed. In contrast, open probability measured at very negative voltages (less than −80 mV) increases more than 1,000-fold in 70 μM Ca2+, demonstrating that Ca2+ increases the C-O equilibrium constant under conditions where voltage sensors are not activated. Thus, Ca2+ binding and voltage sensor activation act almost independently, to enhance channel opening. This dual-allosteric mechanism can reproduce the steady-state behavior of mSlo1 over a wide range of conditions, with the assumption that activation of individual Ca2+ sensors or voltage sensors additively affect the energy of the C-O transition and that a weak interaction between Ca2+ sensors and voltage sensors occurs independent of channel opening. By contrast, macroscopic IK kinetics indicate that Ca2+ and voltage dependencies of C-O transition rates are complex, leading us to propose that the C-O conformational change may be described by a complex energy landscape.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Determination of the subunit stoichiometry of a voltage-activated potassium channel.

              The voltage-activated K+, Na+ and Ca2+ channels are responsible for the generation and propagation of electrical signals in cell membranes. The K+ channels are multimeric membrane proteins formed by the aggregation of an unknown number of independent subunits. By studying the interaction of a scorpion toxin with coexpressed wild-type and toxin-insensitive mutant Shaker K+ channels, the subunit stoichiometry can be determined. The Shaker K+ channel is found to have a tetrameric structure. This is consistent with the sequence relationship between a K+ channel and each of the four internally homologous repeats of Na+ and Ca2+ channels.
                Bookmark

                Author and article information

                Journal
                Annual Review of Physiology
                Annu. Rev. Physiol.
                Annual Reviews
                0066-4278
                1545-1585
                February 10 2019
                February 10 2019
                : 81
                : 1
                : 113-137
                Affiliations
                [1 ]Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri 63110, USA;
                Article
                10.1146/annurev-physiol-022516-034038
                6380188
                30742788
                5b72d7e1-8f7d-4baa-af72-d626ea99e1ce
                © 2019
                History

                Comments

                Comment on this article