29
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Oxidative stress-based therapeutics in COPD

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Oxidative stress is a major driving mechanism in the pathogenesis of COPD. There is increased oxidative stress in the lungs of COPD patients due to exogenous oxidants in cigarette smoke and air pollution and due to endogenous generation of reactive oxygen species by inflammatory and structural cells in the lung. Mitochondrial oxidative stress may be particularly important in COPD. There is also a reduction in antioxidant defences, with inactivation of several antioxidant enzymes and the transcription factors Nrf2 and FOXO that regulate multiple antioxidant genes. Increased systemic oxidative stress may exacerbate comorbidities and contribute to skeletal muscle weakness. Oxidative stress amplifies chronic inflammation, stimulates fibrosis and emphysema, causes corticosteroid resistance, accelerates lung aging, causes DNA damage and stimulates formation of autoantibodies. This suggests that treating oxidative stress by antioxidants or enhancing endogenous antioxidants should be an effective strategy to treat the underlying pathogenetic mechanisms of COPD. Most clinical studies in COPD have been conducted using glutathione-generating antioxidants such as N-acetylcysteine, carbocysteine and erdosteine, which reduce exacerbations in COPD patients, but it is not certain whether this is due to their antioxidant or mucolytic properties. Dietary antioxidants have so far not shown to be clinically effective in COPD. There is a search for more effective antioxidants, which include superoxide dismutase mimetics, NADPH oxidase inhibitors, mitochondria-targeted antioxidants and Nrf2 activators.

          Related collections

          Most cited references93

          • Record: found
          • Abstract: found
          • Article: not found

          Chronic obstructive pulmonary disease in non-smokers.

          Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. Tobacco smoking is established as a major risk factor, but emerging evidence suggests that other risk factors are important, especially in developing countries. An estimated 25-45% of patients with COPD have never smoked; the burden of non-smoking COPD is therefore much higher than previously believed. About 3 billion people, half the worldwide population, are exposed to smoke from biomass fuel compared with 1.01 billion people who smoke tobacco, which suggests that exposure to biomass smoke might be the biggest risk factor for COPD globally. We review the evidence for the association of COPD with biomass fuel, occupational exposure to dusts and gases, history of pulmonary tuberculosis, chronic asthma, respiratory-tract infections during childhood, outdoor air pollution, and poor socioeconomic status.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oxidative stress in COPD.

            Oxidative stress is now recognized as a major predisposing factor in the pathogenesis of COPD. Existing therapies for COPD are ineffective at halting disease progression, with bronchodilators being the mainstay of pharmacotherapy, providing symptomatic relief only. It is, therefore, important for a better understanding of the underlying mechanisms by which oxidative stress drives disease pathogenesis to develop novel and more effective therapies. Antioxidant capacity in COPD is substantially reduced as a result of cigarette smoking and exacerbations, with oxidative stress persisting long after the cessation of cigarette smoking or exacerbation, due to the continued production of reactive oxygen species from endogenous sources. We discuss (1) how oxidative stress arises in the lung, (2) how it is neutralized, (3) what genetic factors may predispose to the development of COPD, and (4) how this impacts inflammation and autoimmunity in the development of emphysema and small airways disease. Finally, various strategies have been considered to neutralize the increased oxidative burden present in COPD. This review highlights why current antioxidant strategies have so far failed and what promising alternatives are on the horizon. Moreover, a number of studies have shown that there is no single "magic bullet" to combat oxidative stress, but instead a combination therapy, targeting oxidative stress in the various subcellular compartments, may prove to be more effective in COPD.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Corticosteroid resistance in patients with asthma and chronic obstructive pulmonary disease.

              Reduced responsiveness to the anti-inflammatory effects of corticosteroids is a major barrier to effective management of asthma in smokers and patients with severe asthma and in the majority of patients with chronic obstructive pulmonary disease (COPD). The molecular mechanisms leading to steroid resistance are now better understood, and this has identified new targets for therapy. In patients with severe asthma, several molecular mechanisms have been identified that might account for reduced steroid responsiveness, including reduced nuclear translocation of glucocorticoid receptor (GR) α after binding corticosteroids. This might be due to modification of the GR by means of phosphorylation as a result of activation of several kinases (p38 mitogen-activated protein kinase α, p38 mitogen-activated protein kinase γ, and c-Jun N-terminal kinase 1), which in turn might be due to reduced activity and expression of phosphatases, such as mitogen-activated protein kinase phosphatase 1 and protein phosphatase A2. Other mechanisms proposed include increased expression of GRβ, which competes with and thus inhibits activated GRα; increased secretion of macrophage migration inhibitory factor; competition with the transcription factor activator protein 1; and reduced expression of histone deacetylase (HDAC) 2. HDAC2 appears to mediate the action of steroids to switch off activated inflammatory genes, but in patients with COPD, patients with severe asthma, and smokers with asthma, HDAC2 activity and expression are reduced by oxidative stress through activation of phosphoinositide 3-kinase δ. Strategies for managing steroid resistance include alternative anti-inflammatory drugs, but a novel approach is to reverse steroid resistance by increasing HDAC2 expression, which can be achieved with theophylline and phosphoinositide 3-kinase δ inhibitors. Long-acting β2-agonists can also increase steroid responsiveness by reversing GRα phosphorylation. Identifying the molecular mechanisms of steroid resistance in asthmatic patients and patients with COPD can thus lead to more effective anti-inflammatory treatments. Copyright © 2013 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                20 April 2020
                June 2020
                20 April 2020
                : 33
                : 101544
                Affiliations
                [1]Airway Disease Section, National Heart & Lung Institute, Imperial College London, Dovehouse Street, SW3 6LY, London, UK
                Article
                S2213-2317(20)30161-0 101544
                10.1016/j.redox.2020.101544
                7251237
                32336666
                5b73ad4c-4018-4b07-8ba2-8133258ef9af
                © 2020 The Author

                This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

                History
                : 30 January 2020
                : 14 April 2020
                : 15 April 2020
                Categories
                Article

                reactive oxygen species,inflammation,nadph oxidase inhibitor,mitochondria-targeted antioxidants,nrf2 activator

                Comments

                Comment on this article