7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Insulin-Like Growth Factor Axis Expression in Dental Pulp Cells Derived From Carious Teeth

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The insulin-like growth factor (IGF) axis plays an important role in dental tissue regeneration and most components of this axis are expressed in human dental pulp cells (DPCs). In our previous study, we analyzed IGF axis gene expression in DPCs and demonstrated a novel role of IGF binding protein (IGFBP)-2 and -3 in coordinating mineralized matrix formation in differentiating DPCs. A more recent study from our laboratory partially characterized dental pulp stem cells from teeth with superficial caries (cDPCs) and showed that their potential to differentiate odontoblasts and/or into osteoblasts is enhanced by exposure to the mild inflammatory conditions characteristic of superficial caries. In the present study, we examine whether changes apparent in IGF axis expression during osteogenic differentiation of healthy DPCs are also apparent in DPCs derived from carious affected teeth.

          Related collections

          Most cited references35

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Dental Pulp Defence and Repair Mechanisms in Dental Caries

          Dental caries is a chronic infectious disease resulting from the penetration of oral bacteria into the enamel and dentin. Microorganisms subsequently trigger inflammatory responses in the dental pulp. These events can lead to pulp healing if the infection is not too severe following the removal of diseased enamel and dentin tissues and clinical restoration of the tooth. However, chronic inflammation often persists in the pulp despite treatment, inducing permanent loss of normal tissue and reducing innate repair capacities. For complete tooth healing the formation of a reactionary/reparative dentin barrier to distance and protect the pulp from infectious agents and restorative materials is required. Clinical and in vitro experimental data clearly indicate that dentin barrier formation only occurs when pulp inflammation and infection are minimised, thus enabling reestablishment of tissue homeostasis and health. Therefore, promoting the resolution of pulp inflammation may provide a valuable therapeutic opportunity to ensure the sustainability of dental treatments. This paper focusses on key cellular and molecular mechanisms involved in pulp responses to bacteria and in the pulpal transition between caries-induced inflammation and dentinogenic-based repair. We report, using selected examples, different strategies potentially used by odontoblasts and specialized immune cells to combat dentin-invading bacteria in vivo.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Insulin-like Growth Factor 2 (IGF-2) Potentiates BMP-9-Induced Osteogenic Differentiation and Bone Formation

            Efficient osteogenic differentiation and bone formation from mesenchymal stem cells (MSCs) should have clinical applications in treating nonunion fracture healing. MSCs are adherent bone marrow stromal cells that can self-renew and differentiate into osteogenic, chondrogenic, adipogenic, and myogenic lineages. We have identified bone morphogenetic protein 9 (BMP-9) as one of the most osteogenic BMPs. Here we investigate the effect of insulin-like growth factor 2 (IGF-2) on BMP-9-induced bone formation. We have found that endogenous IGF-2 expression is low in MSCs. Expression of IGF-2 can potentiate BMP-9-induced early osteogenic marker alkaline phosphatase (ALP) activity and the expression of later markers. IGF-2 has been shown to augment BMP-9-induced ectopic bone formation in the stem cell implantation assay. In perinatal limb explant culture assay, IGF-2 enhances BMP-9-induced endochondral ossification, whereas IGF-2 itself can promote the expansion of the hypertropic chondrocyte zone of the cultured limb explants. Expression of the IGF antagonists IGFBP3 and IGFBP4 leads to inhibition of the IGF-2 effect on BMP-9-induced ALP activity and matrix mineralization. Mechanistically, IGF-2 is further shown to enhance the BMP-9-induced BMPR-Smad reporter activity and Smad1/5/8 nuclear translocation. PI3-kinase (PI3K) inhibitor LY294002 abolishes the IGF-2 potentiation effect on BMP-9-mediated osteogenic signaling and can directly inhibit BMP-9 activity. These results demonstrate that BMP-9 crosstalks with IGF-2 through PI3K/AKT signaling pathway during osteogenic differentiation of MSCs. Taken together, our findings suggest that a combination of BMP-9 and IGF-2 may be explored as an effective bone-regeneration agent to treat large segmental bony defects, nonunion fracture, and/or osteoporotic fracture. © 2010 American Society for Bone and Mineral Research.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Comparison of human dental pulp and bone marrow stromal stem cells by cDNA microarray analysis.

              We compared the gene expression profiles of human dental pulp stem cells (DPSCs) and bone marrow stromal stem cells (BMSSCs) as representative populations of odontoprogenitor and osteoprogenitor cells, respectively. Total RNA from primary cultures was reverse-transcribed to generate cDNA probes and then hybridized with the Research Genetics human gene microarray filter GF211. The microarrays were analyzed using the PATHWAYS software package. Human DPSCs and BMSSCs were found to have a similar level of gene expression for more than 4000 known human genes. A few differentially expressed genes, including collagen type XVIII alpha1, insulin-like growth factor-2 (IGF-2), discordin domain tyrosine kinase 2, NAD(P)H menadione oxidoreductase, homolog 2 of Drosophila large disk, and cyclin-dependent kinase 6 were highly expressed in DPSCs, whereas insulin-like growth factor binding protein-7 (IGFBP-7), and collagen type I alpha2 were more highly expressed in BMSSCs. Furthermore, we confirmed the differential expression of these genes by semiquantitative polymerase chain reaction (PCR) and northern blot hybridization. The protein expression patterns for both IGF-2 and IGFBP-7 correlated with the differential mRNA levels seen between DPSCs and BMSSCs. This report describes the gene expression patterns of two distinct precursor populations associated with mineralized tissue, and provides a basis for further characterization of the functional roles for many of these genes in the development of dentin and bone.
                Bookmark

                Author and article information

                Contributors
                Journal
                Front Bioeng Biotechnol
                Front Bioeng Biotechnol
                Front. Bioeng. Biotechnol.
                Frontiers in Bioengineering and Biotechnology
                Frontiers Media S.A.
                2296-4185
                12 April 2018
                2018
                : 6
                : 36
                Affiliations
                [1] 1Division of Oral Biology, Leeds School of Dentistry, St James University Hospital, University of Leeds , Leeds, United Kingdom
                [2] 2Department of Oral Biology, Faculty of Dentistry, King Abdul Aziz University , Jeddah, Saudi Arabia
                [3] 3Department of Oral Pathology, Faculty of Dentistry, Suez Canal University , Ismailia, Egypt
                Author notes

                Edited by: Rania El Backly, Alexandria University, Egypt

                Reviewed by: Samer Zaky, University of Pittsburgh, United States; Roberta Tasso, Ospedale San Martino (IRCCS), Italy

                *Correspondence: Reem El-Gendy, R.El-Gendy@ 123456leeds.ac.uk

                Specialty section: This article was submitted to Tissue Engineering and Regenerative Medicine, a section of the journal Frontiers in Bioengineering and Biotechnology

                Article
                10.3389/fbioe.2018.00036
                5906522
                5b7f8e03-9845-4546-b43b-eac2cc0ac6da
                Copyright © 2018 Alkharobi, Al-Khafaji, Beattie, Devine and El-Gendy.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 19 January 2018
                : 15 March 2018
                Page count
                Figures: 2, Tables: 1, Equations: 0, References: 37, Pages: 6, Words: 4350
                Categories
                Bioengineering and Biotechnology
                Original Research

                insulin-like growth factor axis,igf binding protein-3,igf binding proteins-2,dental pulp stem cells,inflammation,pulp regeneration,caries,dentin

                Comments

                Comment on this article