Blog
About

0
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A case-crossover study on air pollutants and hospital admission for respiratory diseases

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective To study the effect of four air pollutants, fine particulate matter (PM 2.5), inhalable particulate matter (PM 10), nitrogen dioxide (NO 2), sulfur dioxide (SO 2), on daily hospital admission for respiratory diseases (pneumonia, chronic obstructive pulmonary disease, tuberculosis) in Dongying district of Dongying city, and we provide evidence for interventions.

          Methods Daily air pollutant concentration and the number of admission for respiratory diseases in Donying district were collected from January 1, 2015, to December 31, 2017. The Poisson regression combined with the distributed lag nonlinear model and two-way time-stratified case-crossover design was used to calculate the RR value of four air pollutants on admission for three respiratory diseases.

          Results After adjusting the effect of meteorological factors and day of the week, we got the maximum RR of 1.252 (1.090-1.438) , 1.094 (1.021-1.173) , 1.462 (1.179-1.814) , 1.275 (1.079-1.505) for daily PM 2.5, PM 10, NO 2, SO 2 increase by 10 μg/m 3 at the 3rd, 6th, 4th, 6th lag day on pneumonia admission, the maximum RR of 1.478 (1.245-1.754) , 1.156 (1.046-1.279) , 1.774 (1.297-2.428) , 1.215 (1.011-1.461) at the 4th, 5th, 4th, 0 lag day on chronic obstructive pulmonary disease admission, and of 2.423 (1.618-3.630) , 1.629 (1.288-2.059) , 1.892 (1.220-2.935) , 1.939 (1.453-2.590) at the 3 d, 0 d, 0 d, 5 d lag on tuberculosis admission.

          Conclusion Short-time increase of air pollutants could increase the hospital admission for respiratory diseases in Dongying district. The effects at different lags varied with different air pollutants.

          Abstract

          摘要: 目的 研究不同浓度细颗粒物 (PM 2.5)、可吸入颗粒物 (PM 10)、二氧化氮 (NO 2)、二氧化硫 (SO 2) 四种大气污染 物对东营市东营区呼吸系统疾病 (肺炎、慢性阻塞型肺病、肺结核) 日入院人数的影响, 为制定干预措施提供依据。 方法 收集东营区 2015 年 1 月 1 日—2017 年 12 月 31 日每日大气污染物浓度及呼吸系统疾病入院数据, 采用泊松回归 分析将分布滞后非线性模型与双向时间分层病例交叉设计相结合, 分别计算四种污染物对三种呼吸系统疾病入院作 用的 RR 值。 结果 在排除气象因素、星期几效应等混杂因素的影响后, PM 2.5、PM 10、NO 2、SO 2 日平均浓度每升高 10 μg/ m 3, 对 肺 炎 入 院 影 响 的 最 大 RR 值 为 1.252 (1.090~1.438)、1.094 (1.021~1.173)、1.462 (1.179~1.814) 和 1.275 (1.079~ 1.505) , 滞后 3 d、6 d、4 d 和 6 d; 对慢性阻塞型肺病入院作用最大 RR 为 1.478 (1.245~1.754)、1.156 (1.046~1.279)、1.774 (1.297~2.428) 和 1.215 (1.011~1.461) , 滞后 4 d、5 d、4 d 和 0 d; 对肺结核病入院作用最大 RR 值为 2.423 (1.618~3.630)、1.629 (1.288~2.059)、1.892 (1.220~2.935) 和 1.939 (1.453~2.590) , 滞后 3 d、0 d、0 d 和 5 d。 结论 大气污染物浓度短时间 内升高可使东营区呼吸系统疾病患者人数增加, 不同污染物作用强度和滞后效应并不相同。

          Related collections

          Author and article information

          Journal
          CTM
          China Tropical Medicine
          China Tropical Medicine (China )
          1009-9727
          01 June 2020
          01 June 2020
          : 20
          : 6
          : 519-522
          Affiliations
          1Section of Environmental Health, School of Public Health, Jining Medical University, Jining, Shandong 272013, China
          Author notes
          Corresponding author: WANG Wenjun, E-mail: wwjun1973@ 123456163.com
          Article
          j.cnki.46-1064/r.2020.06.06
          10.13604/j.cnki.46-1064/r.2020.06.06
          © 2020 Editorial Department of China Tropical Medicine

          This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 Unported License (CC BY-NC 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. See https://creativecommons.org/licenses/by-nc/4.0/.

          Product
          Self URI (journal page): http://www.cntropmed.com
          Categories
          Journal Article

          Comments

          Comment on this article