+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Visceral obesity is associated with increased soluble CD163 concentration in men with type 2 diabetes mellitus

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Monocyte/macrophage-specific soluble CD163 (sCD163) concentration is associated with insulin resistance and increases with deteriorating glycemic control independently of BMI. This led to the proposal of the hypothesis that obesity-associated white adipose tissue inflammation varies between individuals. The objective was to examine the effect of male overweight/obesity and type 2 diabetes mellitus (T2DM) on associations between adiposity parameters and sCD163. A total of 23 overweight/obese non-diabetic men, 16 overweight/obese men with T2DM, and a control group of 20 normal-weight healthy men were included. Body composition and regional body fat distribution were determined by whole-body dual X-ray absorptiometry scan and abdominal computed tomography (CT) scan. Serum sCD163 concentrations were determined by ELISA. Associations between adiposity parameters and sCD163 were investigated using multiple linear regression analysis. In the normal-weight healthy men, there was no significant association between adiposity parameters and sCD163, whereas in the overweight/obese non-diabetic men, measures of general and regional adiposity were positively associated with sCD163. In the overweight/obese men with T2DM, only visceral adipose tissue (VAT) and the ratio of VAT to abdominal subcutaneous adipose tissue (SAT), a measure of relative body fat distribution between VAT and SAT depots, were positively associated with sCD163. In a multivariate analysis, including VAT, upper-body SAT, and lower-body fat, adjusted for BMI and age, VAT remained a significant predictor of sCD163 in the overweight/obese T2DM men, but not in the overweight/obese non-diabetic men. Our results indicate that VAT inflammation is exaggerated in men with T2DM, and that propensity to store excess body fat viscerally is particularly detrimental in men with T2DM.

          Related collections

          Most cited references 25

          • Record: found
          • Abstract: found
          • Article: not found

          Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss.

          In human obesity, the stroma vascular fraction (SVF) of white adipose tissue (WAT) is enriched in macrophages. These cells may contribute to low-grade inflammation and to its metabolic complications. Little is known about the effect of weight loss on macrophages and genes involved in macrophage attraction. We examined subcutaneous WAT (scWAT) of 7 lean and 17 morbidly obese subjects before and 3 months after bypass surgery. Immunomorphological changes of the number of scWAT-infiltrating macrophages were evaluated, along with concomitant changes in expression of SVF-overexpressed genes. The number of scWAT-infiltrating macrophages before surgery was higher in obese than in lean subjects (HAM56+/CD68+; 22.6 +/- 4.3 vs. 1.4 +/- 0.6%, P < 0.001). Typical "crowns" of macrophages were observed around adipocytes. Drastic weight loss resulted in a significant decrease in macrophage number (-11.63 +/- 2.3%, P < 0.001), and remaining macrophages stained positive for the anti-inflammatory protein interleukin 10. Genes involved in macrophage attraction (monocyte chemotactic protein [MCP]-1, plasminogen activator urokinase receptor [PLAUR], and colony-stimulating factor [CSF]-3) and hypoxia (hypoxia-inducible factor-1alpha [HIF-1alpha]), expression of which increases in obesity and decreases after surgery, were predominantly expressed in the SVF. We show that improvement of the inflammatory profile after weight loss is related to a reduced number of macrophages in scWAT. MCP-1, PLAUR, CSF-3, and HIF-1alpha may play roles in the attraction of macrophages in scWAT.
            • Record: found
            • Abstract: found
            • Article: not found

            Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity.

            In human obesity, white adipose tissue (WAT) is enriched in macrophages. How macrophage infiltration in WAT contributes to the complications of obesity is unknown. This study tested the hypothesis that recruitment of macrophages in omental WAT is associated with hepatic damage in obese patients. Paired biopsies of subcutaneous and omental WAT and a liver biopsy were collected during gastric surgery in 46 obese women and 9 obese men (BMI 47.9 +/- 0.93 kg/m(2)). The number of HAM56+ macrophages in WAT was quantified microscopically, and correlations with clinical and biological parameters and histological liver pathology were investigated. There were twice as many macrophages in omental as in subcutaneous WAT (P<0.0001). After adjustment for age, omental WAT macrophage infiltration was correlated to fasting glucose and insulin, quantitative insulin sensitivity check index, triglycerides, aspartate aminotransferase (AST), and gamma-glutamyltranspeptidase. We propose an easy equation to estimate the amount of macrophages in omental WAT. Increased macrophage accumulation specifically in omental WAT was associated with hepatic fibroinflammatory lesions (P=0.01). The best predictive model for the severity of hepatic damage includes adiponectinemia, AST, and omental WAT macrophages. These data suggest that the presence of macrophages in omental WAT participates in the cellular mechanisms favoring hepatic fibroinflammatory lesions in obese patients.
              • Record: found
              • Abstract: found
              • Article: not found

              Macrophage infiltration into omental versus subcutaneous fat across different populations: effect of regional adiposity and the comorbidities of obesity.

              Macrophage infiltration into adipose tissue has been demonstrated to accompany obesity, with a potential preferential infiltration into intraabdominal vs. sc fat. Our objective was to determine whether this occurs across different populations with a range of body mass indexes and to assess the relationship with regional adiposity and comorbidity of obesity. In two independent cohorts, we used paired omental (OM) and sc fat biopsies from lean controls or predominantly sc or intraabdominally obese persons with minimal comorbidity (n = 60, cohort 1), or from severely obese women with a significant rate of comorbidity (n = 29, cohort 2). Elevated macrophage infiltration into OM vs. sc fat was observable in lean subjects and exaggerated by obesity, particularly if predominantly intraabdominal. This was paralleled by increased monocyte chemoattractant protein-1 (MCP1) and colony-stimulating factor-1 (CSF1) mRNA levels. Level of CSF1 and MCP1 mRNA correlated with the number of OM macrophages (r = 0.521, P < 0.0001 and r = 0.258, P < 0.051, respectively). In severely obese women (mean body mass index = 43.0 +/- 1.1 kg/m(2)), higher protein expression of both MCP1 and CSF1 was detected in OM vs. sc fat. Number of OM macrophages, but not of sc macrophages, correlated with waist circumference (r = 0.636, P = 0.001 vs. r = 0.170, P = 0.427) and with the number of metabolic syndrome parameters (r = 0.385, P = 0.065 vs. r = -0.158, P = 0.472, respectively). Preferential macrophage infiltration into OM fat was mainly observed in a subgroup in whom obesity was associated with impaired glucose homeostasis. Preferential macrophage infiltration into OM fat is a general phenomenon exaggerated by central obesity, potentially linking central adiposity with increased risk of diabetes and coronary heart disease.

                Author and article information

                Endocr Connect
                Endocr Connect
                Endocrine Connections
                Bioscientifica Ltd (Bristol )
                24 January 2015
                1 March 2015
                : 4
                : 1
                : 27-36
                [1 ]Department of Endocrinology and Internal Medicine, Aarhus University Hospital , Nørrebrogade 448000, Aarhus C, Denmark
                [2 ]Department of Clinical Biochemistry, Horsens County Hospital , Horsens, Denmark
                [3 ]Department of Biostatistics, Aarhus University , Aarhus, Denmark
                [4 ]Department of Clinical Biochemistry, Aarhus University Hospital , Aarhus, Denmark
                Author notes
                Correspondence should be addressed to L P Sørensen Email: larspetersorensen@ 123456dadlnet.dk
                © 2015 The authors

                This work is licensed under a Creative Commons Attribution 3.0 Unported License



                Comment on this article