+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Population Structure and Distribution Patterns of the Sibling Mosquito Species Culex pipiens and Culex torrentium (Diptera: Culicidae) Reveal Different Evolutionary Paths

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Nowadays a number of endemic mosquito species are known to possess vector abilities for various diseases, as e.g. the sibling species Culex pipiens and Culex torrentium. Due to their morphological similarity, ecology, distribution and vector abilities, knowledge about these species' population structure is essential. Culicidae from 25 different sampling sites were collected from March till October 2012. All analyses were performed with aligned cox1 sequences with a total length of 658 bp. Population structure as well as distribution patterns of both species were analysed using molecular methods and different statistical tests like distance based redundancy analysis (dbDRA), analysis of molecular variances (AMOVA) or McDonald & Kreitman test and Tajima's D. Within both species, we could show a genetic variability among the cox1 fragment. The construction of haplotype networks revealed one dominating haplotype for Cx. pipiens, widely distributed within Germany and a more homogeneous pattern for Cx. torrentium. The low genetic differences within Cx. pipiens could be a result of an infection with Wolbachia which can induce a sweep through populations by passively taking the also maternally inherited mtDNA through the population, thereby reducing the mitochondrial diversity as an outcome of reproductive incompatibility. Pairwise population genetic differentiation (F ST) ranged significantly from moderate to very great between populations of Cx. pipiens and Cx. torrentium. Analyses of molecular variances revealed for both species that the main genetic variability exists within the populations ( Cx. pipiens [88.38%]; Cx. torrentium [66.54%]). Based on a distance based redundancy analysis geographical origin explained a small but significant part of the species' genetic variation. Overall, the results confirm that Cx. pipiens and Cx. torrentium underlie different factors regarding their mitochondrial differentiation, which could be a result of endosymbiosis, dispersal between nearly located populations or human introduction.

          Related collections

          Most cited references 37

          • Record: found
          • Abstract: found
          • Article: not found

          DNA barcoding and taxonomy in Diptera: a tale of high intraspecific variability and low identification success.

          DNA barcoding and DNA taxonomy have recently been proposed as solutions to the crisis of taxonomy and received significant attention from scientific journals, grant agencies, natural history museums, and mainstream media. Here, we test two key claims of molecular taxonomy using 1333 mitochondrial COI sequences for 449 species of Diptera. We investigate whether sequences can be used for species identification ("DNA barcoding") and find a relatively low success rate (< 70%) based on tree-based and newly proposed species identification criteria. Misidentifications are due to wide overlap between intra- and interspecific genetic variability, which causes 6.5% of all query sequences to have allospecific or a mixture of allo- and conspecific (3.6%) best-matching barcodes. Even when two COI sequences are identical, there is a 6% chance that they belong to different species. We also find that 21% of all species lack unique barcodes when consensus sequences of all conspecific sequences are used. Lastly, we test whether DNA sequences yield an unambiguous species-level taxonomy when sequence profiles are assembled based on pairwise distance thresholds. We find many sequence triplets for which two of the three pairwise distances remain below the threshold, whereas the third exceeds it; i.e., it is impossible to consistently delimit species based on pairwise distances. Furthermore, for species profiles based on a 3% threshold, only 47% of all profiles are consistent with currently accepted species limits, 20% contain more than one species, and 33% only some sequences from one species; i.e., adopting such a DNA taxonomy would require the redescription of a large proportion of the known species, thus worsening the taxonomic impediment. We conclude with an outlook on the prospects of obtaining complete barcode databases and the future use of DNA sequences in a modern integrative taxonomy.
            • Record: found
            • Abstract: found
            • Article: not found

            A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation.

            We previously developed a cladistic approach to identify subsets of haplotypes defined by restriction endonuclease mapping or DNA sequencing that are associated with significant phenotypic deviations. Our approach was limited to segments of DNA in which little recombination occurs. In such cases, a cladogram can be constructed from the restriction site or sequence data that represents the evolutionary steps that interrelate the observed haplotypes. The cladogram is used to define a nested statistical design to identify mutational steps associated with significant phenotypic deviations. The central assumption behind this strategy is that any undetected mutation causing a phenotypic effect is embedded within the same evolutionary history that is represented by the cladogram. The power of this approach depends upon the confidence one has in the particular cladogram used to draw inferences. In this paper, we present a strategy for estimating the set of cladograms that are consistent with a particular sample of either restriction site or nucleotide sequence data and that includes the possibility of recombination. We first evaluate the limits of parsimony in constructing cladograms. Once these limits have been determined, we construct the set of parsimonious and nonparsimonious cladograms that is consistent with these limits. Our estimation procedure also identifies haplotypes that are candidates for being products of recombination. If recombination is extensive, our algorithm subdivides the DNA region into two or more subsections, each having little or no internal recombination. We apply this estimation procedure to three data sets to illustrate varying degrees of cladogram ambiguity and recombination.
              • Record: found
              • Abstract: found
              • Article: not found

              The estimation of population differentiation with microsatellite markers.

              Microsatellite markers are routinely used to investigate the genetic structuring of natural populations. The knowledge of how genetic variation is partitioned among populations may have important implications not only in evolutionary biology and ecology, but also in conservation biology. Hence, reliable estimates of population differentiation are crucial to understand the connectivity among populations and represent important tools to develop conservation strategies. The estimation of differentiation is c from Wright's FST and/or Slatkin's RST, an FST -analogue assuming a stepwise mutation model. Both these statistics have their drawbacks. Furthermore, there is no clear consensus over their relative accuracy. In this review, we first discuss the consequences of different temporal and spatial sampling strategies on differentiation estimation. Then, we move to statistical problems directly associated with the estimation of population structuring itself, with particular emphasis on the effects of high mutation rates and mutation patterns of microsatellite loci. Finally, we discuss the biological interpretation of population structuring estimates.

                Author and article information

                Role: Editor
                PLoS One
                PLoS ONE
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                21 July 2014
                : 9
                : 7
                [1 ]Goethe-University (GU), Institute for Ecology, Evolution and Diversity; Biodiversity and Climate Research Centre (BiK-F), Senckenberg Gesellschaft für Naturforschung (SGN), Frankfurt am Main, Germany
                [2 ]Institute for General Zoology and Developmental Biology, Justus Liebig University (JLU), Giessen, Germany
                [3 ]Department of Chemical Ecology, Bielefeld University, Bielefeld, Germany
                Institut Pasteur, France
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: CM SK. Performed the experiments: AW SB. Analyzed the data: JS. Contributed reagents/materials/analysis tools: SK. Contributed to the writing of the manuscript: CM JS AW AD SK.


                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                Page count
                Pages: 14
                The present study was financially supported by the research funding program “LOEWE – Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz” of Hesse's Ministry of Higher Education, Research, and the Arts, by the SAW (Senate Competition Committee) grant (SAW-2011-BNI-3; SAW-2014-SGN-3) of the Leibniz Association as well as the German Research Council (grant no. DFG BiodivERsA KL 2087/6-1). Jan Sauer is funded by a research grant of the German Research Council (DFG) (SA2228/1-1). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Research Article
                Biology and Life Sciences
                Custom metadata
                The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its Supporting Information files; accession numbers of used sequence data are listed in the paper.



                Comment on this article