7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Lnc-DC regulates cellular turnover and the HBV-induced immune response by TLR9/STAT3 signaling in dendritic cells

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Lnc-DC is a specific group of long non-coding (Lnc) RNAs in dendritic cells (DCs). Its function has been previously studied, and includes roles in dendritic cell differentiation and the progression of some diseases. In this study, we observed the critical role of Lnc-DC in regulating the differentiation, growth, and apoptosis of dendritic cells.

          Methods

          We first isolated peripheral blood mononuclear cells to culture and induce into DCs, which were then co-cultured with hepatitis B virus (HBV)-secreting HepG2.2.15 cells for the detection of changes in Lnc-DC. The expression levels of TLR9, p-STAT3, and SOCS3 were tested with qPCR and western blot. MTT assays were used to analyze the cell proliferation, cell cycle, and apoptosis. We used ELISA to test the expression of TNF-α, IL-1β, IL-6, IL-12p40, and IFN-γ.

          Results

          Co-culture with HBV-secreting HepG2.2.15 cells increased the level of Lnc-DC and activated TLR9/STAT3 signaling. The HBV DNA level (IU/ml) was positively correlated with levels of Lnc-DC and TLR9, further demonstrating that Lnc-DC was associated with the immune response of HBV. Lnc-DC was shown to regulate TLR9/STAT3 signaling in dendritic cells. More interestingly, the regulation of Lnc-DC controlled the immune response by reducing the concentration of secreted TNF-α, IL-6, IL-12, and IFN-γ, as well as increasing the IL-1β concentration in dendritic cells.

          Conclusion

          Lnc-DC is important in regulating the growth, apoptosis, and immune response of dendritic cells mediated by TLR9/STAT3 signaling, and was also activated by HBV. This study provides a previously unidentified mechanism underlying the immune response in dendritic cells.

          Related collections

          Most cited references14

          • Record: found
          • Abstract: found
          • Article: not found

          TLR9-Targeted STAT3 Silencing Abrogates Immunosuppressive Activity of Myeloid-Derived Suppressor Cells from Prostate Cancer Patients.

          Recent advances in immunotherapy of advanced human cancers underscored the need to address and eliminate tumor immune evasion. The myeloid-derived suppressor cells (MDSC) are important inhibitors of T-cell responses in solid tumors, such as prostate cancers. However, targeting MDSCs proved challenging due to their phenotypic heterogeneity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Identification of long non-coding RNAs GAS5, linc0597 and lnc-DC in plasma as novel biomarkers for systemic lupus erythematosus

            Despite increasing evidence that long non-coding RNAs (lncRNAs) widely take part in human diseases, the role of lncRNAs in systemic lupus erythematosus (SLE) is largely unknown. In this study, we performed a two-stage study to explore the plasma levels of five lncRNAs (GAS5, linc0949, linc0597, HOTAIRM1 and lnc-DC) and their potential as SLE biomarkers. Compared with healthy controls, plasma levels of GAS5 and lnc-DC were significantly decreased (P < 0.001 and P = 0.002, respectively) while linc0597 were overexpressed in SLE patients (P < 0.001). When SLE patients were divided into SLE without nephritis and lupus nephritis (LN), the levels of lnc-DC were significantly higher in LN compared with SLE without nephritis (P = 0.018), but no significant difference in levels of GAS5 and linc0597 were found between LN and SLE without nephritis; plasma linc0949 level showed no significant difference in all comparisons. Further evaluation on potential biomarkers showed that GAS5, linc0597 and lnc-DC may specifically identify patients with SLE, the combination of GAS5 and linc0597 provided better diagnostic accuracy; lnc-DC may discriminate LN from SLE without nephritis. In summary, GAS5, linc0597 and lnc-DC in plasma could be potential biomarkers for SLE.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stable HepG2- and Huh7-based human hepatoma cell lines for efficient regulated expression of infectious hepatitis B virus.

              Hepatitis B virus (HBV) cannot be propagated in cultured cells but two human hepatoma cell lines, HepG2 and Huh7, support virus replication when transfected with HBV DNA. If standardization is required stably transfected cell lines provide distinct advantages. One such line, HepG2.2.15, is widely used in antiviral research but HBV production is limited and difficult to control. Our aim was to establish stable, inducibly HBV producing HepG2 and Huh7 cell lines that overcome these limitations. Based on the tetracycline (Tet)-regulated TetOFF system, a Tet-responsive promoter-controlled HBV genome was introduced into separately established, well-regulatable HepG2 and Huh7 lines expressing Tet-responsive trans-activators (tTAs). Stable clones were analyzed for regulatability and levels of HBV expression, quality of the virus produced, and responsiveness towards antivirals. HepG2- and Huh7-based cell lines were established which, Tet-controllably, produce more HBV than HepG2.2.15 cells. The secreted virions were infectious for primary tupaia hepatocytes, and the cell lines responded as well as HepG2.215 cells to different antivirals. The new HBV cell lines should be valuable tools for academic and pharmaceutical HBV research. The parental tTA-cells will facilitate the generation of additional lines, producing HBV variants, or other genes, in an identical host cell background.
                Bookmark

                Author and article information

                Contributors
                +86 0755-27788311-3978 , huangchenghuisci@163.com
                Journal
                Cell Mol Biol Lett
                Cell. Mol. Biol. Lett
                Cellular & Molecular Biology Letters
                BioMed Central (London )
                1425-8153
                1689-1392
                3 September 2018
                3 September 2018
                2018
                : 23
                : 43
                Affiliations
                [1 ]ISNI 0000 0000 8877 7471, GRID grid.284723.8, Department of Infectious Disease, , the Affiliated Shenzhen Baoan Hospital of Southern Medical University, ; Shenzhen, 518101 China
                [2 ]Department of Infectious Disease, Shenzhen Baoan District People’s Hospital, No. 118, Xin’an Street, Long Jing er Raod, Shenzhen, 518101 China
                Article
                108
                10.1186/s11658-018-0108-y
                6122708
                30202418
                5bbf34ab-de62-4547-9d15-8f03088ab389
                © The Author(s) 2018

                Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 19 April 2018
                : 8 August 2018
                Funding
                Funded by: Science and Technology Planning Project of Shenzhen Municipality
                Award ID: JCYJ20150402152005629
                Award Recipient :
                Categories
                Short Report
                Custom metadata
                © The Author(s) 2018

                dendritic cell,lnc-dc,tlr9/stat3,hbv
                dendritic cell, lnc-dc, tlr9/stat3, hbv

                Comments

                Comment on this article