15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evaluation of the NMP22 BladderChek test for detecting bladder cancer: a systematic review and meta-analysis

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          We examined the usefulness of the nuclear matrix protein 22 (NMP22) BladderChek test for detecting bladder cancer.

          Materials and Methods

          A literature search was performed using PubMed, Embase, the Cochrane Library, and Web of Science. The diagnostic accuracy of the NMP22 BladderChek test was evaluated via pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR), and area under curve (AUC). Inter-study heterogeneity was explored using meta-regression and subgroup analyses.

          Results

          We included 23 studies in the systematic review and 19 in the quantitative meta-analysis. Overall sensitivity and specificity were 56% (52–59%) and 88% (87–89%), respectively; pooled PLR and NLR were 4.36 (3.02–6.29) and 0.51 (0.40–0.66), respectively; DOR was 9.29 (5.55–15.55) with an AUC of 0.8295. The mean sensitivity for Ta, T1, ≥ T2, Tis, G1, G2, and G3 disease was 13.68%, 29.49%, 74.03%, 34.62%, 44.16%, 56.25%, and 67.34%, respectively.

          Conclusions

          The NMP22 BladderChek test shows good discrimination ability for detecting bladder cancer and a high-specificity algorithm that can be used for early detection to rule out patients with higher bladder cancer risk. It also has better potential for screening higher-grade and higher-stage tumors, and better diagnostic performance in Asians.

          Related collections

          Most cited references40

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Meta-DiSc: a software for meta-analysis of test accuracy data

          Background Systematic reviews and meta-analyses of test accuracy studies are increasingly being recognised as central in guiding clinical practice. However, there is currently no dedicated and comprehensive software for meta-analysis of diagnostic data. In this article, we present Meta-DiSc, a Windows-based, user-friendly, freely available (for academic use) software that we have developed, piloted, and validated to perform diagnostic meta-analysis. Results Meta-DiSc a) allows exploration of heterogeneity, with a variety of statistics including chi-square, I-squared and Spearman correlation tests, b) implements meta-regression techniques to explore the relationships between study characteristics and accuracy estimates, c) performs statistical pooling of sensitivities, specificities, likelihood ratios and diagnostic odds ratios using fixed and random effects models, both overall and in subgroups and d) produces high quality figures, including forest plots and summary receiver operating characteristic curves that can be exported for use in manuscripts for publication. All computational algorithms have been validated through comparison with different statistical tools and published meta-analyses. Meta-DiSc has a Graphical User Interface with roll-down menus, dialog boxes, and online help facilities. Conclusion Meta-DiSc is a comprehensive and dedicated test accuracy meta-analysis software. It has already been used and cited in several meta-analyses published in high-ranking journals. The software is publicly available at .
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Combining independent studies of a diagnostic test into a summary ROC curve: data-analytic approaches and some additional considerations.

            We consider how to combine several independent studies of the same diagnostic test, where each study reports an estimated false positive rate (FPR) and an estimated true positive rate (TPR). We propose constructing a summary receiver operating characteristic (ROC) curve by the following steps. (i) Convert each FPR to its logistic transform U and each TPR to its logistic transform V after increasing each observed frequency by adding 1/2. (ii) For each study calculate D = V - U, which is the log odds ratio of TPR and FPR, and S = V + U, an implied function of test threshold; then plot each study's point (Si, Di). (iii) Fit a robust-resistant regression line to these points (or an equally weighted least-squares regression line), with V - U as the dependent variable. (iv) Back-transform the line to ROC space. To avoid model-dependent extrapolation from irrelevant regions of ROC space we propose defining a priori a value of FPR so large that the test simply would not be used at that FPR, and a value of TPR so low that the test would not be used at that TPR. Then (a) only data points lying in the thus defined north-west rectangle of the unit square are used in the data analysis, and (b) the estimated summary ROC is depicted only within that subregion of the unit square. We illustrate the methods using simulated and real data sets, and we point to ways of comparing different tests and of taking into account the effects of covariates.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder, the 2011 update.

              To present the 2011 European Association of Urology (EAU) guidelines on non-muscle-invasive bladder cancer (NMIBC). Literature published between 2004 and 2010 on the diagnosis and treatment of NMIBC was systematically reviewed. Previous guidelines were updated, and the level of evidence (LE) and grade of recommendation (GR) were assigned. Tumours staged as Ta, T1, or carcinoma in situ (CIS) are grouped as NMIBC. Diagnosis depends on cystoscopy and histologic evaluation of the tissue obtained by transurethral resection (TUR) in papillary tumours or by multiple bladder biopsies in CIS. In papillary lesions, a complete TUR is essential for the patient's prognosis. Where the initial resection is incomplete or where a high-grade or T1 tumour is detected, a second TUR should be performed within 2-6 wk. In papillary tumours, the risks of both recurrence and progression may be estimated for individual patients using the scoring system and risk tables. The stratification of patients into low-, intermediate-, and high-risk groups-separately for recurrence and progression-is pivotal to recommending adjuvant treatment. For patients with a low risk of tumour recurrence and progression, one immediate instillation of chemotherapy is recommended. Patients with an intermediate or high risk of recurrence and an intermediate risk of progression should receive one immediate instillation of chemotherapy followed by a minimum of 1 yr of bacillus Calmette-Guérin (BCG) intravesical immunotherapy or further instillations of chemotherapy. Papillary tumours with a high risk of progression and CIS should receive intravesical BCG for 1 yr. Cystectomy may be offered to the highest risk patients, and it is at least recommended in BCG failure patients. The long version of the guidelines is available from the EAU Web site (www.uroweb.org). These abridged EAU guidelines present updated information on the diagnosis and treatment of NMIBC for incorporation into clinical practice. Copyright © 2011 European Association of Urology. Published by Elsevier B.V. All rights reserved.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                21 November 2017
                23 October 2017
                : 8
                : 59
                : 100648-100656
                Affiliations
                1 Department of Urology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
                Author notes
                Correspondence to: Min Gu, Lancetgu@ 123456aliyun.com.cn
                [*]

                These authors contributed equally to this work

                Article
                22065
                10.18632/oncotarget.22065
                5725051
                29246009
                5bc114c3-5e94-413b-a293-63e7ad4146bb
                Copyright: © 2017 Wang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 June 2017
                : 3 September 2017
                Categories
                Meta-Analysis

                Oncology & Radiotherapy
                bladder cancer,nmp22 bladderchek test,diagnostic,systematic review,meta-analysis

                Comments

                Comment on this article