22
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Melatonin Regulates the Synthesis of Steroid Hormones on Male Reproduction: A Review

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Melatonin is a ubiquitous molecule and exhibits different effects in long-day and short-day breeding animals. Testosterone, the main resource of androgens in the testis, is produced by Leydig cells but regulated mainly by cytokine secreted by Sertoli cells. Melatonin acts as a local modulator of the endocrine activity in Leydig cells. In Sertoli cells, melatonin influences cellular proliferation and energy metabolism and, consequently, can regulate steroidogenesis. These suggest melatonin as a key player in the regulation of steroidogenesis. However, the melatonin-induced regulation of steroid hormones may differ among species, and the literature data indicate that melatonin has important effects on steroidogenesis and male reproduction.

          Related collections

          Most cited references49

          • Record: found
          • Abstract: found
          • Article: not found

          Melatonin, energy metabolism, and obesity: a review.

          Melatonin is an old and ubiquitous molecule in nature showing multiple mechanisms of action and functions in practically every living organism. In mammals, pineal melatonin functions as a hormone and a chronobiotic, playing a major role in the regulation of the circadian temporal internal order. The anti-obesogen and the weight-reducing effects of melatonin depend on several mechanisms and actions. Experimental evidence demonstrates that melatonin is necessary for the proper synthesis, secretion, and action of insulin. Melatonin acts by regulating GLUT4 expression and/or triggering, via its G-protein-coupled membrane receptors, the phosphorylation of the insulin receptor and its intracellular substrates mobilizing the insulin-signaling pathway. Melatonin is a powerful chronobiotic being responsible, in part, by the daily distribution of metabolic processes so that the activity/feeding phase of the day is associated with high insulin sensitivity, and the rest/fasting is synchronized to the insulin-resistant metabolic phase of the day. Furthermore, melatonin is responsible for the establishment of an adequate energy balance mainly by regulating energy flow to and from the stores and directly regulating the energy expenditure through the activation of brown adipose tissue and participating in the browning process of white adipose tissue. The reduction in melatonin production, as during aging, shift-work or illuminated environments during the night, induces insulin resistance, glucose intolerance, sleep disturbance, and metabolic circadian disorganization characterizing a state of chronodisruption leading to obesity. The available evidence supports the suggestion that melatonin replacement therapy might contribute to restore a more healthy state of the organism. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found

            Kisspeptin Activation of Gonadotropin Releasing Hormone Neurons and Regulation of KiSS-1 mRNA in the Male Rat

            The KiSS-1 gene codes for a family of neuropeptides called kisspeptins which bind to the G-protein-coupled receptor GPR54. To assess the possible effects of kisspeptins on gonadotropin secretion, we injected kisspeptin-52 into the lateral cerebral ventricles of adult male rats and found that kisspeptin-52 increased the serum levels of luteinizing hormone (p < 0.05). To determine whether the kisspeptin-52-induced stimulation of luteinizing hormone secretion was mediated by gonadotropin-releasing hormone (GnRH), we pretreated adult male rats with a GnRH antagonist (acyline), then challenged the animals with intracerebroventricularly administered kisspeptin-52. The GnRH antagonist blocked the kisspeptin-52-induced increase in luteinizing hormone. To examine whether kisspeptins stimulate transcriptional activity in GnRH neurons, we administered kisspeptin-52 intracerebroventricularly and found by immunocytochemistry that 86% of the GnRH neurons coexpressed Fos 2 h after the kisspeptin-52 challenge, whereas fewer than 1% of the GnRH neurons expressed Fos following injection of the vehicle alone (p < 0.001). To assess whether kisspeptins can directly act on GnRH neurons, we used double-label in situ hybridization and found that 77% of the GnRH neurons coexpress GPR54 mRNA. Finally, to determine whether KiSS-1 gene expression is regulated by gonadal hormones, we measured KiSS-1 mRNA levels by single-label in situ hybridization in intact and castrated males and found significantly higher levels in the arcuate nucleus of castrates. These results demonstrate that GnRH neurons are direct targets for regulation by kisspeptins and that KiSS-1 mRNA is regulated by gonadal hormones, suggesting that KiSS-1 neurons play an important role in the feedback regulation of gonadotropin secretion.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Regulation of spermatogonial stem cell self-renewal and spermatocyte meiosis by Sertoli cell signaling.

              Spermatogenesis is a continuous and productive process supported by the self-renewal and differentiation of spermatogonial stem cells (SSCs), which arise from undifferentiated precursors known as gonocytes and are strictly controlled in a special 'niche' microenvironment in the seminiferous tubules. Sertoli cells, the only somatic cell type in the tubules, directly interact with SSCs to control their proliferation and differentiation through the secretion of specific factors. Spermatocyte meiosis is another key step of spermatogenesis, which is regulated by Sertoli cells on the luminal side of the blood-testis barrier through paracrine signaling. In this review, we mainly focus on the role of Sertoli cells in the regulation of SSC self-renewal and spermatocyte meiosis, with particular emphasis on paracrine and endocrine-mediated signaling pathways. Sertoli cell growth factors, such as glial cell line-derived neurotrophic factor (GDNF) and fibroblast growth factor 2 (FGF2), as well as Sertoli cell transcription factors, such as ETS variant 5 (ERM; also known as ETV5), nociceptin, neuregulin 1 (NRG1), and androgen receptor (AR), have been identified as the most important upstream factors that regulate SSC self-renewal and spermatocyte meiosis. Other transcription factors and signaling pathways (GDNF-RET-GFRA1 signaling, FGF2-MAP2K1 signaling, CXCL12-CXCR4 signaling, CCL9-CCR1 signaling, FSH-nociceptin/OPRL1, retinoic acid/FSH-NRG/ERBB4, and AR/RB-ARID4A/ARID4B) are also addressed.
                Bookmark

                Author and article information

                Journal
                Molecules
                Molecules
                molecules
                Molecules : A Journal of Synthetic Chemistry and Natural Product Chemistry
                MDPI
                1420-3049
                17 February 2018
                February 2018
                : 23
                : 2
                : 447
                Affiliations
                [1 ]State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; young137@ 123456163.com (K.Y.); dengsl@ 123456ioz.ac.cn (S.-L.D.); WuLiliwulw@ 123456163.com (T.-C.S.); WentingLi66@ 123456163.com (Y.-Y.L.)
                [2 ]National Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
                Author notes
                [* ]Correspondence: liuyx@ 123456ioz.ac.cn ; Tel.: 86-010-6480-7058
                [†]

                These authors contributed equally to this work.

                Article
                molecules-23-00447
                10.3390/molecules23020447
                6017169
                29462985
                5bc4046a-cf27-4af7-9ca5-79597f979732
                © 2018 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 19 January 2018
                : 14 February 2018
                Categories
                Review

                melatonin,steroidogenesis,leydig cell,sertoli cell
                melatonin, steroidogenesis, leydig cell, sertoli cell

                Comments

                Comment on this article