21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Ecology and Evolution of Insect–Fungus Mutualisms

      1 , 2
      Annual Review of Entomology
      Annual Reviews

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The evolution of a mutualism requires reciprocal interactions whereby one species provides a service that the other species cannot perform or performs less efficiently. Services exchanged in insect–fungus mutualisms include nutrition, protection, and dispersal. In ectosymbioses, which are the focus of this review, fungi can be consumed by insects or can degrade plant polymers or defensive compounds, thereby making a substrate available to insects. They can also protect against environmental factors and produce compounds antagonistic to microbial competitors. Insects disperse fungi and can also provide fungal growth substrates and protection. Insect–fungus mutualisms can transition from facultative to obligate, whereby each partner is no longer viable on its own. Obligate dependency has ( a) resulted in the evolution of morphological adaptations in insects and fungi, ( b) driven the evolution of social behaviors in some groups of insects, and ( c) led to the loss of sexuality in some fungal mutualists.

          Related collections

          Most cited references132

          • Record: found
          • Abstract: found
          • Article: not found

          Extreme genome reduction in symbiotic bacteria.

          Since 2006, numerous cases of bacterial symbionts with extraordinarily small genomes have been reported. These organisms represent independent lineages from diverse bacterial groups. They have diminutive gene sets that rival some mitochondria and chloroplasts in terms of gene numbers and lack genes that are considered to be essential in other bacteria. These symbionts have numerous features in common, such as extraordinarily fast protein evolution and a high abundance of chaperones. Together, these features point to highly degenerate genomes that retain only the most essential functions, often including a considerable fraction of genes that serve the hosts. These discoveries have implications for the concept of minimal genomes, the origins of cellular organelles, and studies of symbiosis and host-associated microbiota.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Phylogenomics resolves the timing and pattern of insect evolution.

            Insects are the most speciose group of animals, but the phylogenetic relationships of many major lineages remain unresolved. We inferred the phylogeny of insects from 1478 protein-coding genes. Phylogenomic analyses of nucleotide and amino acid sequences, with site-specific nucleotide or domain-specific amino acid substitution models, produced statistically robust and congruent results resolving previously controversial phylogenetic relations hips. We dated the origin of insects to the Early Ordovician [~479 million years ago (Ma)], of insect flight to the Early Devonian (~406 Ma), of major extant lineages to the Mississippian (~345 Ma), and the major diversification of holometabolous insects to the Early Cretaceous. Our phylogenomic study provides a comprehensive reliable scaffold for future comparative analyses of evolutionary innovations among insects. Copyright © 2014, American Association for the Advancement of Science.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data.

              Zygomycete fungi were classified as a single phylum, Zygomycota, based on sexual reproduction by zygospores, frequent asexual reproduction by sporangia, absence of multicellular sporocarps, and production of coenocytic hyphae, all with some exceptions. Molecular phylogenies based on one or a few genes did not support the monophyly of the phylum, however, and the phylum was subsequently abandoned. Here we present phylogenetic analyses of a genome-scale data set for 46 taxa, including 25 zygomycetes and 192 proteins, and we demonstrate that zygomycetes comprise two major clades that form a paraphyletic grade. A formal phylogenetic classification is proposed herein and includes two phyla, six subphyla, four classes and 16 orders. On the basis of these results, the phyla Mucoromycota and Zoopagomycota are circumscribed. Zoopagomycota comprises Entomophtoromycotina, Kickxellomycotina and Zoopagomycotina; it constitutes the earliest diverging lineage of zygomycetes and contains species that are primarily parasites and pathogens of small animals (e.g. amoeba, insects, etc.) and other fungi, i.e. mycoparasites. Mucoromycota comprises Glomeromycotina, Mortierellomycotina, and Mucoromycotina and is sister to Dikarya. It is the more derived clade of zygomycetes and mainly consists of mycorrhizal fungi, root endophytes, and decomposers of plant material. Evolution of trophic modes, morphology, and analysis of genome-scale data are discussed.
                Bookmark

                Author and article information

                Journal
                Annual Review of Entomology
                Annu. Rev. Entomol.
                Annual Reviews
                0066-4170
                1545-4487
                January 07 2020
                January 07 2020
                : 65
                : 1
                : 431-455
                Affiliations
                [1 ]Research Group Insect-Fungus Symbiosis, Department of Animal Ecology and Tropical Biology, University of Würzburg, 97074 Würzburg, Germany;
                [2 ]Sustainable Perennial Crops Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA;
                Article
                10.1146/annurev-ento-011019-024910
                31610133
                5bca9654-6ac1-4248-8c8f-1ae39962c23e
                © 2020
                History

                Comments

                Comment on this article