10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Leptin inhibits osteoclast generation.

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Originally, leptin was described as a product of adipocytes that acts on the hypothalamus to regulate appetite. However, subsequently, it has been shown that leptin receptors are distributed widely and that leptin has diverse functions, including promotion of hemopoietic and osteoblastic differentiation. It has been recognized for some time that both serum leptin and bone mass are correlated positively to body fat mass and, recently, we have shown a direct positive relationship between serum leptin and bone mass in nonobese women. We now report that leptin inhibits osteoclast generation in cultures of human peripheral blood mononuclear cells (PBMCs) and murine spleen cells incubated on bone in the presence of human macrophage colony-stimulating factor (hM-CSF) and human soluble receptor activator of NF-kappaB ligand (sRANKL). The half-maximal concentration inhibitory of leptin was approximately 20 nM in the presence of sRANKL at 40 ng/ml but decreased to approximately 2 nM when sRANKL was used at 5 ng/ml. The majority of the inhibitory effect occurred in the first week of the 3-week cultures. Inhibition did not occur when the PBMC cultures were washed vigorously to remove nonadherent cells or when purified CD14+ monocytes were used to generate osteoclasts, indicating an indirect or permissive effect via CD14- PBMC. Leptin increased osteoprotegerin (OPG) messenger RNA (mRNA) and protein expression in PBMC but not in CD14+ cells, suggesting that the inhibitory effect may be mediated by the RANKL/RANK/OPG system. Leptin may act locally to increase bone mass and may contribute to linkage of bone formation and resorption.

          Related collections

          Author and article information

          Journal
          J Bone Miner Res
          Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
          Wiley
          0884-0431
          0884-0431
          Feb 2002
          : 17
          : 2
          Affiliations
          [1 ] Department of Clinical and Biomedical Sciences: Barwon Health, The Geelong Hospital, The University of Melbourne, Australia.
          Article
          10.1359/jbmr.2002.17.2.200
          11811550
          5bcc3f11-9702-44ad-b790-bbc89d78a263
          History

          Comments

          Comment on this article