178
views
1
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbiome and morbid obesity increase pathogenic stimulus diversity

      review-article

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The microbiome, the relationship between environmental factors, a high-fat diet, morbid obesity, and host response have been associated with cancer, only a small fraction of which (<10%) are genetically triggered. This nongenetic association is underpinned by a worldwide increase in morbid obesity, which is associated with both insulin resistance and chronic inflammation. The connection of the microbiome and morbid obesity is reinforced by an approximate shift of about 47% in the estimated total number of bacteria and an increase from 38,000,000,000,000 in a reference man to 56,000,000,000,000 in morbid obesity leading to a disruption of the microbial ecology within the gut. Humans contain 6,000,000,000 microbes and more than 90% of the cells of the human body are microorganisms. Changes in the microflora of the gut are associated with the polarization of ion channels by butyrate, thereby influencing cell growth. The decrease in the relative proportion of Bacteroidetes together with a change in the fermentation of carbohydrates by bacteria is observed in morbid obesity. The disruption of homeostasis of the microflora in the obese changes signaling and crosstalk of several pathways, resulting in inflammation while suppressing apoptosis. The interactions between the microbiome and morbid obesity are important to understand signaling and crosstalk in the context of the progression of the six-step sequence of carcinogenesis. This disruption of homeostasis increases remodeling of the extracellular matrix and fibrosis followed by the none-resolvable precancerous niche as the internal pathogenic stimuli continue. The chronic stress explains why under such circumstances there is a greater proclivity for normal cells to undergo the transition to cancer cells.

          Most cited references174

          • Record: found
          • Abstract: found
          • Article: not found

          Microbial ecology: human gut microbes associated with obesity.

          Two groups of beneficial bacteria are dominant in the human gut, the Bacteroidetes and the Firmicutes. Here we show that the relative proportion of Bacteroidetes is decreased in obese people by comparison with lean people, and that this proportion increases with weight loss on two types of low-calorie diet. Our findings indicate that obesity has a microbial component, which might have potential therapeutic implications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Revised Estimates for the Number of Human and Bacteria Cells in the Body

            Reported values in the literature on the number of cells in the body differ by orders of magnitude and are very seldom supported by any measurements or calculations. Here, we integrate the most up-to-date information on the number of human and bacterial cells in the body. We estimate the total number of bacteria in the 70 kg "reference man" to be 3.8·1013. For human cells, we identify the dominant role of the hematopoietic lineage to the total count (≈90%) and revise past estimates to 3.0·1013 human cells. Our analysis also updates the widely-cited 10:1 ratio, showing that the number of bacteria in the body is actually of the same order as the number of human cells, and their total mass is about 0.2 kg.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Obesity is associated with macrophage accumulation in adipose tissue

                Bookmark

                Author and article information

                Journal
                fopen
                https://www.4open-sciences.org
                4open
                4open
                EDP Sciences
                2557-0250
                25 April 2019
                25 April 2019
                2019
                : 2
                : ( publisher-idID: fopen/2019/01 )
                : 10
                Affiliations
                [1 ] Theodor-Billroth-Academy®, , Germany, USA,
                [2 ] INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Academy®, , Germany, USA,
                [3 ] Department of Surgery, Carl-Thiem-Klinikum, , Cottbus, Germany,
                [4 ] Risk-Based Decisions Inc., , Sacramento, CA, USA,
                Author notes
                [* ]Corresponding author: b-bruecher@ 123456gmx.de
                Article
                fopen180012
                10.1051/fopen/2018007
                5bce3675-2f9c-40eb-9b5b-8978b03032d0
                © B.L.D.M. Brücher and I.S. Jamall, Published by EDP Sciences 2019

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 22 March 2018
                : 21 November 2018
                Page count
                Figures: 1, Tables: 1, Equations: 0, References: 178, Pages: 16
                Categories
                Life Sciences - Medicine
                Disruption of homeostasis-induced signaling and crosstalk in the carcinogenesis paradigm “Epistemology of the origin of cancer”
                Review Article
                Custom metadata
                yes
                4open 2019, 2, 10
                2019
                2019
                2019

                Medicine,Chemistry,Physics,Mathematics,Materials science,Life sciences
                Signaling,Precancerous niche,Somatic mutation theory,Cell transition,Microbiology,Microbiome,Microflora,Virology,Carcinogenesis,Cancer,Viriome,Fibrosis,Chronic inflammation

                Comments

                Comment on this article