80
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Non Digestible Oligosaccharides Modulate the Gut Microbiota to Control the Development of Leukemia and Associated Cachexia in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We tested the hypothesis that changing the gut microbiota using pectic oligosaccharides (POS) or inulin (INU) differently modulates the progression of leukemia and related metabolic disorders. Mice were transplanted with Bcr-Abl-transfected proB lymphocytes mimicking leukemia and received either POS or INU in their diet (5%) for 2 weeks. Combination of pyrosequencing, PCR-DGGE and qPCR analyses of the 16S rRNA gene revealed that POS decreased microbial diversity and richness of caecal microbiota whereas it increased Bifidobacterium spp., Roseburia spp. and Bacteroides spp. (affecting specifically B. dorei) to a higher extent than INU. INU supplementation increased the portal SCFA propionate and butyrate, and decreased cancer cell invasion in the liver. POS treatment did not affect hepatic cancer cell invasion, but was more efficient than INU to decrease the metabolic alterations. Indeed, POS better than INU delayed anorexia linked to cancer progression. In addition, POS treatment increased acetate in the caecal content, changed the fatty acid profile inside adipose tissue and counteracted the induction of markers controlling β-oxidation, thereby hampering fat mass loss. Non digestible carbohydrates with prebiotic properties may constitute a new nutritional strategy to modulate gut microbiota with positive consequences on cancer progression and associated cachexia.

          Related collections

          Most cited references27

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Responses of Gut Microbiota and Glucose and Lipid Metabolism to Prebiotics in Genetic Obese and Diet-Induced Leptin-Resistant Mice

          OBJECTIVE To investigate deep and comprehensive analysis of gut microbial communities and biological parameters after prebiotic administration in obese and diabetic mice. RESEARCH DESIGN AND METHODS Genetic (ob/ob) or diet-induced obese and diabetic mice were chronically fed with prebiotic-enriched diet or with a control diet. Extensive gut microbiota analyses, including quantitative PCR, pyrosequencing of the 16S rRNA, and phylogenetic microarrays, were performed in ob/ob mice. The impact of gut microbiota modulation on leptin sensitivity was investigated in diet-induced leptin-resistant mice. Metabolic parameters, gene expression, glucose homeostasis, and enteroendocrine-related L-cell function were documented in both models. RESULTS In ob/ob mice, prebiotic feeding decreased Firmicutes and increased Bacteroidetes phyla, but also changed 102 distinct taxa, 16 of which displayed a >10-fold change in abundance. In addition, prebiotics improved glucose tolerance, increased L-cell number and associated parameters (intestinal proglucagon mRNA expression and plasma glucagon-like peptide-1 levels), and reduced fat-mass development, oxidative stress, and low-grade inflammation. In high fat–fed mice, prebiotic treatment improved leptin sensitivity as well as metabolic parameters. CONCLUSIONS We conclude that specific gut microbiota modulation improves glucose homeostasis, leptin sensitivity, and target enteroendocrine cell activity in obese and diabetic mice. By profiling the gut microbiota, we identified a catalog of putative bacterial targets that may affect host metabolism in obesity and diabetes.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Adipose triglyceride lipase contributes to cancer-associated cachexia.

            Cachexia is a multifactorial wasting syndrome most common in patients with cancer that is characterized by the uncontrolled loss of adipose and muscle mass. We show that the inhibition of lipolysis through genetic ablation of adipose triglyceride lipase (Atgl) or hormone-sensitive lipase (Hsl) ameliorates certain features of cancer-associated cachexia (CAC). In wild-type C57BL/6 mice, the injection of Lewis lung carcinoma or B16 melanoma cells causes tumor growth, loss of white adipose tissue (WAT), and a marked reduction of gastrocnemius muscle. In contrast, Atgl-deficient mice with tumors resisted increased WAT lipolysis, myocyte apoptosis, and proteasomal muscle degradation and maintained normal adipose and gastrocnemius muscle mass. Hsl-deficient mice with tumors were also protected although to a lesser degree. Thus, functional lipolysis is essential in the pathogenesis of CAC. Pharmacological inhibition of metabolic lipases may help prevent cachexia.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Understanding the effects of diet on bacterial metabolism in the large intestine.

              Recent analyses of ribosomal RNA sequence diversity have demonstrated the extent of bacterial diversity in the human colon, and have provided new tools for monitoring changes in the composition of the gut microbial community. There is now an excellent opportunity to correlate ecological niches and metabolic activities with particular phylogenetic groups among the microbiota of the human gut. Bacteria that associate closely with particulate material and surfaces in the gut include specialized primary degraders of insoluble substrates, including resistant starch, plant structural polysaccharides and mucin. Butyrate-producing bacteria found in human faeces belong mainly to the clostridial clusters IV and XIVa. In vitro and in vivo evidence indicates that a group related to Roseburia and Eubacterium rectale plays a major role in mediating the butyrogenic effect of fermentable dietary carbohydrates. Additional cluster XIVa species can convert lactate to butyrate, while some members of the clostridial cluster IX convert lactate to propionate. The metabolic outputs of the gut microbial community depend not only on available substrate, but also on the gut environment, with pH playing a major role. Better understanding of the colonic microbial ecosystem will help to explain and predict the effects of dietary additives, including nondigestible carbohydrates, probiotics and prebiotics.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                22 June 2015
                2015
                : 10
                : 6
                : e0131009
                Affiliations
                [1 ]Metabolism and Nutrition Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
                [2 ]Fundamental and Applied Research for Animal and Health (FARAH), Faculty of Veterinary Medicine, University of Liège, Sart Tilman, Liège, Belgium
                [3 ]Bioanalysis and Pharmacology of Bioactive Lipids lab, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium
                [4 ]Department of Chemistry and Bio-industry, Gembloux Agro-Bio Tech, University of Liège, Gembloux, Belgium
                [5 ]Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
                [6 ]Department of Microbiology and Biochemistry of Dairy Products, Instituto de Productos Lácteos de Asturias, (IPLA-CSIC), Villaviciosa, Asturias, Spain
                [7 ]Walloon Excellence in Life sciences and BIOtechnology (WELBIO), Louvain Drug Research Institute, UCL, B-1200 Brussels, Belgium
                Kobe University, JAPAN
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: LBB AMN NMD. Performed the experiments: LBB AMN BT NS CD GGM. Analyzed the data: LBB AMN BT NS CD GGM. Contributed reagents/materials/analysis tools: EF AR CB. Wrote the paper: AMN LBB NMD. Provided intellectual input on the paper and reviewed the paper: PDC GD JM CGR GGM. Planned and supervised all experiments and manuscript preparation: NMD.

                Article
                PONE-D-15-06272
                10.1371/journal.pone.0131009
                4476728
                26098097
                5bd05193-e0cb-4482-8cd4-4a46cbaafd8c
                Copyright @ 2015

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

                History
                : 11 February 2015
                : 26 May 2015
                Page count
                Figures: 5, Tables: 1, Pages: 16
                Funding
                LBB is a Postdoctoral Researcher from the F.R.S.-FNRS (Fond National de la Recherche Scientifique, Belgium). NS is the recipient of a postdoctoral fellowship from the Spanish Ministry of Education, Culture and Sports. CD benefits from a Danone Institute grant. PDC is a research associate at FRS-FNRS (Fonds de la Recherche Scientifique, Belgium). GGM is a recipient of grants from FRS-FNRS and from FSR (UCL, Belgium). Financial support has been provided by a grant from the Walloon Region (Hydrasanté Project, convention 816875) and by a grant from the Spanish Ministry of Economy and Competitiveness (AGL2010-16525). NMD and PDC are recipients of grants from FNRS, and PDC is a recipient of ERC Starting Grant 2013 (European Research Council, Starting Grant 336452-ENIGMO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Custom metadata
                All sequencing files are available from the SRA Genbank database (accession numbers SAMN03580736 to SAMN03580767). All other relevant data are within the paper and its Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article