11
views
0
recommends
+1 Recommend
1 collections
    0
    shares

      To submit to Bentham Journals, please click here

      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Microbial Carriage and Contamination of Mangoes by the Oriental Fruit Fly

      Read this article at

      ScienceOpenPublisher
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Fruit flies, especially of the Family Terphritidae, are economically important pests for the horticulture industry because many species cause serious mechanical damage to a number of crops of different plant families. Studies have shown that some species of fruit flies have the potential to contaminate fruits and vegetables with enteric bacterial pathogens. However, this has not been conclusively demonstrated.

          Methods:

          In this study, we investigated enteric bacteria carriage by Bactrocera dorsalis and its possible role in transmission of microbes into internal tissues of fruits. Fruit flies trapped using liquid protein bait, ripe mango fruits exposed to the fruit flies and controls, as well as mangoes obtained from farms with and without fly-control traps, were analyzed for microbes, such as total aerobic bacteria, total coliforms, yeast and molds, Escherichia coli and Salmonella/Shigella spp. using direct culture methods.

          Results and Discussion:

          The results revealed that a high percentage of these insects carries pathogenic bacteria. This finding shows that, like B. cacuminata and B. tryoni, B. dorsalis also carries pathogenic microbes. It was also observed that mangoes sampled from fly-control farms had significantly lower microbial loads and proportions of fruits contaminated compared to those from farms without fly-control. Additionally, all microbial counts of internal tissues were significantly higher for exposed mangoes compared to unexposed mangoes. These data indicate that B. dorsalis contaminates not only the external but also internal tissues of mangoes.

          Conclusion:

          These findings show that B. dorsalis carries pathogenic bacteria and plays a direct role in internalization of microbes in mangoes.

          Related collections

          Most cited references12

          • Record: found
          • Abstract: found
          • Article: not found

          Invasive phytophagous pests arising through a recent tropical evolutionary radiation: the Bactrocera dorsalis complex of fruit flies.

          The Bactrocera dorsalis complex of tropical fruit flies (Diptera: Tephritidae: Dacinae) contains 75 described species, largely endemic to Southeast Asia. Within the complex are a small number of polyphagous pests of international significance, including B. dorsalis sensu stricto, B. papayae, B. carambolae, and B. philippinensis. Most species within the complex were described in 1994 and since then substantial research has been undertaken in developing morphological and molecular diagnostic techniques for their recognition. Such techniques can now resolve most taxa adequately. Genetic evidence suggests that the complex has evolved in only the last few million years, and development of a phylogeny of the group is considered a high priority to provide a framework for future evolutionary and ecological studies. As model systems, mating studies on B. dorsalis s.s. and B. cacuminata have substantially advanced our understanding of insect use of plant-derived chemicals for mating, but such studies have not been applied to help resolve the limits of biological species within the complex. Although they are commonly regarded as major pests, there is little published evidence documenting economic losses caused by flies of the B. dorsalis complex. Quantification of economic losses caused by B. dorsalis complex species is urgently needed to prioritize research for quarantine and management. Although they have been documented as invaders, relatively little work has been done on the invasion biology of the complex and this is an area warranting further work.
            • Record: found
            • Abstract: found
            • Article: not found

            The growing burden of foodborne outbreaks due to contaminated fresh produce: risks and opportunities.

            Foodborne outbreaks from contaminated fresh produce have been increasingly recognized in many parts of the world. This reflects a convergence of increasing consumption of fresh produce, changes in production and distribution, and a growing awareness of the problem on the part of public health officials. The complex biology of pathogen contamination and survival on plant materials is beginning to be explained. Adhesion of pathogens to surfaces and internalization of pathogens limits the usefulness of conventional processing and chemical sanitizing methods in preventing transmission from contaminated produce. Better methods of preventing contamination on the farm, or during packing or processing, or use of a terminal control such as irradiation could reduce the burden of disease transmission from fresh produce. Outbreak investigations represent important opportunities to evaluate contamination at the farm level and along the farm-to-fork continuum. More complete and timely environmental assessments of these events and more research into the biology and ecology of pathogen-produce interactions are needed to identify better prevention strategies.
              • Record: found
              • Abstract: found
              • Article: not found

              Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya.

              Using standard microbiological procedures, bacteria that are potentially pathogenic to humans were isolated from 150 houseflies collected in the Libyan city of Misurata (50 flies each from the Central Hospital, streets and abattoir). Salmonella spp., Yersinia enterocolitica and Edwardsiella tarda were isolated from flies collected on the streets and in the abattoir but not from those collected in the hospital. Shigella sonnei was detected in just one fly, which was collected in the abattoir. Of the flies collected in the hospital, streets and abattor, 42%, 42% and 32% were positive for Escherichia coli, 70%, 50% and 62% for Klebsiella spp., 2%, 20% and 10% for Aeromonas spp., 96%, 36% and 34% for Pseudomonas spp., 20%, 12% and 16% for Staphylococcus spp., and 24%, 22% and 18% for Streptococcus spp., respectively. When the antibiotic susceptibilities of the fly isolates were investigated, the Enterobacteria isolated from the houseflies collected in the hospital were found to be resistant to significantly more of the commonly used antibiotics that were tested than the Enterobacteria isolated from the flies caught in the streets or abattoir. Whatever the source of the flies from which they were collected, the Pseudomonas isolates frequently showed resistance to multiple antibiotics, with >50% each being resistant to at least 10 antimicrobial agents. Two isolates of Sta. aureus (both from flies collected in the hospital) were resistant to methicillin. The present study supports the belief that the housefly is a potential vector of multiple-antibiotic-resistant, pathogenic bacteria, including methicillin-resistant Sta. aureus, in the hospital environment. Given their mobility, it seems likely that houseflies carry such pathogens from hospitals to surrounding communities, and vice versa.

                Author and article information

                Journal
                The Open Public Health Journal
                TOPHJ
                Bentham Science Publishers Ltd.
                1874-9445
                December 13 2017
                December 13 2017
                : 10
                : 1
                : 267-275
                Article
                10.2174/1874944501710010267
                5be3bcc5-49a9-4828-8854-02079ee325bb
                © 2017

                https://creativecommons.org/licenses/by/4.0/legalcode

                History

                Medicine,Chemistry,Life sciences
                Medicine, Chemistry, Life sciences

                Comments

                Comment on this article

                Related Documents Log