5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Historical biogeography of a new antitropical clade of temperate freshwater fishes

      , , ,
      Journal of Biogeography
      Wiley-Blackwell

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references56

          • Record: found
          • Abstract: found
          • Article: not found

          Chronology of fluctuating sea levels since the triassic.

          Advances in sequence stratigraphy and the development of depositional models have helped explain the origin of genetically related sedimentary packages during sea level cycles. These concepts have provided the basis for the recognition of sea level events in subsurface data and in outcrops of marine sediments around the world. Knowledge of these events has led to a new generation of Mesozoic and Cenozoic global cycle charts that chronicle the history of sea level fluctuations during the past 250 million years in greater detail than was possible from seismic-stratigraphic data alone. An effort has been made to develop a realistic and accurate time scale and widely applicable chronostratigraphy and to integrate depositional sequences documented in public domain outcrop sections from various basins with this chronostratigraphic framework. A description of this approach and an account of the results, illustrated by sea level cycle charts of the Cenozoic, Cretaceous, Jurassic, and Triassic intervals, are presented.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A likelihood framework for inferring the evolution of geographic range on phylogenetic trees.

            At a time when historical biogeography appears to be again expanding its scope after a period of focusing primarily on discerning area relationships using cladograms, new inference methods are needed to bring more kinds of data to bear on questions about the geographic history of lineages. Here we describe a likelihood framework for inferring the evolution of geographic range on phylogenies that models lineage dispersal and local extinction in a set of discrete areas as stochastic events in continuous time. Unlike existing methods for estimating ancestral areas, such as dispersal-vicariance analysis, this approach incorporates information on the timing of both lineage divergences and the availability of connections between areas (dispersal routes). Monte Carlo methods are used to estimate branch-specific transition probabilities for geographic ranges, enabling the likelihood of the data (observed species distributions) to be evaluated for a given phylogeny and parameterized paleogeographic model. We demonstrate how the method can be used to address two biogeographic questions: What were the ancestral geographic ranges on a phylogenetic tree? How were those ancestral ranges affected by speciation and inherited by the daughter lineages at cladogenesis events? For illustration we use hypothetical examples and an analysis of a Northern Hemisphere plant clade (Cercis), comparing and contrasting inferences to those obtained from dispersal-vicariance analysis. Although the particular model we implement is somewhat simplistic, the framework itself is flexible and could readily be modified to incorporate additional sources of information and also be extended to address other aspects of historical biogeography.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              The Tree of Life and a New Classification of Bony Fishes

              The tree of life of fishes is in a state of flux because we still lack a comprehensive phylogeny that includes all major groups. The situation is most critical for a large clade of spiny-finned fishes, traditionally referred to as percomorphs, whose uncertain relationships have plagued ichthyologists for over a century. Most of what we know about the higher-level relationships among fish lineages has been based on morphology, but rapid influx of molecular studies is changing many established systematic concepts. We report a comprehensive molecular phylogeny for bony fishes that includes representatives of all major lineages. DNA sequence data for 21 molecular markers (one mitochondrial and 20 nuclear genes) were collected for 1410 bony fish taxa, plus four tetrapod species and two chondrichthyan outgroups (total 1416 terminals). Bony fish diversity is represented by 1093 genera, 369 families, and all traditionally recognized orders. The maximum likelihood tree provides unprecedented resolution and high bootstrap support for most backbone nodes, defining for the first time a global phylogeny of fishes. The general structure of the tree is in agreement with expectations from previous morphological and molecular studies, but significant new clades arise. Most interestingly, the high degree of uncertainty among percomorphs is now resolved into nine well-supported supraordinal groups. The order Perciformes, considered by many a polyphyletic taxonomic waste basket, is defined for the first time as a monophyletic group in the global phylogeny. A new classification that reflects our phylogenetic hypothesis is proposed to facilitate communication about the newly found structure of the tree of life of fishes. Finally, the molecular phylogeny is calibrated using 60 fossil constraints to produce a comprehensive time tree. The new time-calibrated phylogeny will provide the basis for and stimulate new comparative studies to better understand the evolution of the amazing diversity of fishes.
                Bookmark

                Author and article information

                Journal
                Journal of Biogeography
                J. Biogeogr.
                Wiley-Blackwell
                03050270
                September 2014
                September 2014
                : 41
                : 9
                : 1806-1818
                Article
                10.1111/jbi.12333
                5beef80a-a947-409c-b179-735791394b1c
                © 2014

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article