47
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Therapeutic Effect of Neurologic Music Therapy and Speech Language Therapy in Post-Stroke Aphasic Patients

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Objective

          To investigate the therapeutic effect of neurologic music therapy (NMT) and speech language therapy (SLT) through improvement of the aphasia quotient (AQ) in post-stroke aphasic patients.

          Methods

          Twenty-one post-stroke, nonfluent aphasia patients who had ischemic/hemorrhagic stroke on radiologic evaluation were divided into the NMT and SLT groups. They received NMT and SLT for 1 month. Language function was assessed by Korean version-Western Aphasia Battery before and after therapy. NMT consisted of therapeutic singing and melodic intonation therapy, and SLT consisted of language-oriented therapy.

          Results

          Significant improvements were revealed in AQ, repetition, and naming after therapy in the NMT group and improvements in repetition in the SLT group of chronic stroke patients (p<0.05). There were significant improvements in language ability in the NMT group of subacute stroke patients. However, there was no significant improvement in the SLT group of subacute stroke patients.

          Conclusion

          We concluded that the two therapies are effective treatments in the chronic stage of stroke and NMT is effective in subacute post-stroke aphasic patients.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Action representation of sound: audiomotor recognition network while listening to newly acquired actions.

          The discovery of audiovisual mirror neurons in monkeys gave rise to the hypothesis that premotor areas are inherently involved not only when observing actions but also when listening to action-related sound. However, the whole-brain functional formation underlying such "action-listening" is not fully understood. In addition, previous studies in humans have focused mostly on relatively simple and overexperienced everyday actions, such as hand clapping or door knocking. Here we used functional magnetic resonance imaging to ask whether the human action-recognition system responds to sounds found in a more complex sequence of newly acquired actions. To address this, we chose a piece of music as a model set of acoustically presentable actions and trained non-musicians to play it by ear. We then monitored brain activity in subjects while they listened to the newly acquired piece. Although subjects listened to the music without performing any movements, activation was found bilaterally in the frontoparietal motor-related network (including Broca's area, the premotor region, the intraparietal sulcus, and the inferior parietal region), consistent with neural circuits that have been associated with action observations, and may constitute the human mirror neuron system. Presentation of the practiced notes in a different order activated the network to a much lesser degree, whereas listening to an equally familiar but motorically unknown music did not activate this network. These findings support the hypothesis of a "hearing-doing" system that is highly dependent on the individual's motor repertoire, gets established rapidly, and consists of Broca's area as its hub.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            An fMRI investigation of syllable sequence production.

            Fluent speech comprises sequences that are composed from a finite alphabet of learned words, syllables, and phonemes. The sequencing of discrete motor behaviors has received much attention in the motor control literature, but relatively little has been focused directly on speech production. In this paper, we investigate the cortical and subcortical regions involved in organizing and enacting sequences of simple speech sounds. Sparse event-triggered functional magnetic resonance imaging (fMRI) was used to measure responses to preparation and overt production of non-lexical three-syllable utterances, parameterized by two factors: syllable complexity and sequence complexity. The comparison of overt production trials to preparation only trials revealed a network related to the initiation of a speech plan, control of the articulators, and to hearing one's own voice. This network included the primary motor and somatosensory cortices, auditory cortical areas, supplementary motor area (SMA), the precentral gyrus of the insula, and portions of the thalamus, basal ganglia, and cerebellum. Additional stimulus complexity led to increased engagement of the basic speech network and recruitment of additional areas known to be involved in sequencing non-speech motor acts. In particular, the left hemisphere inferior frontal sulcus and posterior parietal cortex, and bilateral regions at the junction of the anterior insula and frontal operculum, the SMA and pre-SMA, the basal ganglia, anterior thalamus, and the cerebellum showed increased activity for more complex stimuli. We hypothesize mechanistic roles for the extended speech production network in the organization and execution of sequences of speech sounds.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Poststroke aphasia : epidemiology, pathophysiology and treatment.

              Aphasia, the loss or impairment of language caused by brain damage, is one of the most devastating cognitive impairments of stroke. Aphasia is present in 21-38% of acute stroke patients and is associated with high short- and long-term morbidity, mortality and expenditure. Recovery from aphasia is possible even in severe cases. While speech-language therapy remains the mainstay treatment of aphasia, the effectiveness of conventional therapies has not been conclusively proved. This has motivated attempts to integrate knowledge from several domains in an effort to plan more rational therapies and to introduce other therapeutic strategies, including the use of intensive language therapy and pharmacological agents. Several placebo-controlled trials suggest that piracetam is effective in recovery from aphasia when started soon after the stroke, but its efficacy vanishes in patients with chronic aphasia. Drugs acting on catecholamine systems (bromocriptine, dexamfetamine) have shown varying degrees of efficacy in case series, open-label studies and placebo-controlled trials. Bromocriptine is useful in acute and chronic aphasias, but its beneficial action appears restricted to nonfluent aphasias with reduced initiation of spontaneous verbal messages. Dexamfetamine improves language function in subacute aphasia and the beneficial effect is maintained in the long term, but its use is restricted to highly selected samples. Pharmacological agents operating on the cholinergic system (e.g. donepezil) have shown promise. Data from single-case studies, case series and an open-label study suggest that donepezil may have beneficial effects on chronic poststroke aphasia. Preliminary evidence suggests that donepezil is well tolerated and its efficacy is maintained in the long term. Randomised controlled trials of donepezil and other cholinergic agents in poststroke aphasia are warranted.
                Bookmark

                Author and article information

                Journal
                Ann Rehabil Med
                Ann Rehabil Med
                ARM
                Annals of Rehabilitation Medicine
                Korean Academy of Rehabilitation Medicine
                2234-0645
                2234-0653
                August 2013
                26 August 2013
                : 37
                : 4
                : 556-562
                Affiliations
                [1 ]Department of Rehabilitation Medicine, Inje University College of Medicine, Ilsan Paik Hospital, Goyang, Korea.
                [2 ]Department of Rehabilitation Medicine, Kwandong University College of Medicine, Myungji Hospital, Goyang, Korea.
                [3 ]Speech Therapy, Inje University Ilsan Paik Hospital, Goyang, Korea.
                Author notes
                Corresponding author: Jeong-Ah Kim. Department of Rehabilitation Medicine, Inje University Ilsan Paik Hospital, 170 Juhwa-ro, Ilsanseo-gu, Goyang 411-706, Korea. Tel: +82-31-910-7442, Fax: +82-31-910-7440, wholespirit@ 123456hanmail.net
                Article
                10.5535/arm.2013.37.4.556
                3764351
                24020037
                5bf905c5-2968-4206-81f0-134662d81bd0
                Copyright © 2013 by Korean Academy of Rehabilitation Medicine

                This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License ( http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 26 April 2012
                : 19 October 2012
                Categories
                Original Article

                Medicine
                stroke,aphasia,music therapy,speech therapy
                Medicine
                stroke, aphasia, music therapy, speech therapy

                Comments

                Comment on this article