14
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      A Simple Text Mining Approach for Ranking Pairwise Associations in Biomedical Applications

      research-article

      Read this article at

      ScienceOpenPMC
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          We present a simple text mining method that is easy to implement, requires minimal data collection and preparation, and is easy to use for proposing ranked associations between a list of target terms and a key phrase. We call this method KinderMiner, and apply it to two biomedical applications. The first application is to identify relevant transcription factors for cell reprogramming, and the second is to identify potential drugs for investigation in drug repositioning. We compare the results from our algorithm to existing data and state-of-the-art algorithms, demonstrating compelling results for both application areas. While we apply the algorithm here for biomedical applications, we argue that the method is generalizable to any available corpus of sufficient size.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors.

          Differentiated cells can be reprogrammed to an embryonic-like state by transfer of nuclear contents into oocytes or by fusion with embryonic stem (ES) cells. Little is known about factors that induce this reprogramming. Here, we demonstrate induction of pluripotent stem cells from mouse embryonic or adult fibroblasts by introducing four factors, Oct3/4, Sox2, c-Myc, and Klf4, under ES cell culture conditions. Unexpectedly, Nanog was dispensable. These cells, which we designated iPS (induced pluripotent stem) cells, exhibit the morphology and growth properties of ES cells and express ES cell marker genes. Subcutaneous transplantation of iPS cells into nude mice resulted in tumors containing a variety of tissues from all three germ layers. Following injection into blastocysts, iPS cells contributed to mouse embryonic development. These data demonstrate that pluripotent stem cells can be directly generated from fibroblast cultures by the addition of only a few defined factors.
            • Record: found
            • Abstract: found
            • Article: not found

            Induction of pluripotent stem cells from adult human fibroblasts by defined factors.

            Successful reprogramming of differentiated human somatic cells into a pluripotent state would allow creation of patient- and disease-specific stem cells. We previously reported generation of induced pluripotent stem (iPS) cells, capable of germline transmission, from mouse somatic cells by transduction of four defined transcription factors. Here, we demonstrate the generation of iPS cells from adult human dermal fibroblasts with the same four factors: Oct3/4, Sox2, Klf4, and c-Myc. Human iPS cells were similar to human embryonic stem (ES) cells in morphology, proliferation, surface antigens, gene expression, epigenetic status of pluripotent cell-specific genes, and telomerase activity. Furthermore, these cells could differentiate into cell types of the three germ layers in vitro and in teratomas. These findings demonstrate that iPS cells can be generated from adult human fibroblasts.
              • Record: found
              • Abstract: found
              • Article: not found

              Induced pluripotent stem cell lines derived from human somatic cells.

              Somatic cell nuclear transfer allows trans-acting factors present in the mammalian oocyte to reprogram somatic cell nuclei to an undifferentiated state. We show that four factors (OCT4, SOX2, NANOG, and LIN28) are sufficient to reprogram human somatic cells to pluripotent stem cells that exhibit the essential characteristics of embryonic stem (ES) cells. These induced pluripotent human stem cells have normal karyotypes, express telomerase activity, express cell surface markers and genes that characterize human ES cells, and maintain the developmental potential to differentiate into advanced derivatives of all three primary germ layers. Such induced pluripotent human cell lines should be useful in the production of new disease models and in drug development, as well as for applications in transplantation medicine, once technical limitations (for example, mutation through viral integration) are eliminated.

                Author and article information

                Journal
                AMIA Jt Summits Transl Sci Proc
                AMIA Jt Summits Transl Sci Proc
                AMIA Summits on Translational Science Proceedings
                American Medical Informatics Association
                2153-4063
                2017
                26 July 2017
                : 2017
                : 166-174
                Affiliations
                [1 ]Morgridge Institute for Research, Madison, USA;
                [2 ]University of Wisconsin, Madison, USA
                Article
                2611116
                5543342
                28815126
                5c01da50-111e-41d5-afbe-90f5dafe963c
                ©2017 AMIA - All rights reserved.

                This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose

                History
                Categories
                Articles

                Comments

                Comment on this article

                Related Documents Log