5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Drug capture materials based on genomic DNA-functionalized magnetic nanoparticles

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Chemotherapy agents are notorious for producing severe side-effects. One approach to mitigating this off-target damage is to deliver the chemotherapy directly to a tumor via transarterial infusion, or similar procedures, and then sequestering any chemotherapeutic in the veins draining the target organ before it enters the systemic circulation. Materials capable of such drug capture are yet to be fully realized. Here, we report the covalent attachment of genomic DNA to iron-oxide nanoparticles. With these magnetic materials, we captured three common chemotherapy agents—doxorubicin, cisplatin, and epirubicin—from biological solutions. We achieved 98% capture of doxorubicin from human serum in 10 min. We further demonstrate that DNA-coated particles can rescue cultured cardiac myoblasts from lethal levels of doxorubicin. Finally, the in vivo efficacy of these materials was demonstrated in a porcine model. The efficacy of these materials demonstrates the viability of genomic DNA-coated materials as substrates for drug capture applications.

          Abstract

          Chemotherapy agents are prone to producing severe side-effects, and their sequestration prior to their entering of the circulatory system is thus highly desirable. Here, the authors functionalize iron oxide nanoparticles with genomic DNA and achieve sequestration of doxorubicin, cisplatin, and epirubicin from biological solutions.

          Related collections

          Most cited references 23

          • Record: found
          • Abstract: found
          • Article: not found

          A DNA-based method for rationally assembling nanoparticles into macroscopic materials.

          Colloidal particles of metals and semiconductors have potentially useful optical, optoelectronic and material properties that derive from their small (nanoscopic) size. These properties might lead to applications including chemical sensors, spectroscopic enhancers, quantum dot and nanostructure fabrication, and microimaging methods. A great deal of control can now be exercised over the chemical composition, size and polydispersity of colloidal particles, and many methods have been developed for assembling them into useful aggregates and materials. Here we describe a method for assembling colloidal gold nanoparticles rationally and reversibly into macroscopic aggregates. The method involves attaching to the surfaces of two batches of 13-nm gold particles non-complementary DNA oligonucleotides capped with thiol groups, which bind to gold. When we add to the solution an oligonucleotide duplex with 'sticky ends' that are complementary to the two grafted sequences, the nanoparticles self-assemble into aggregates. This assembly process can be reversed by thermal denaturation. This strategy should now make it possible to tailor the optical, electronic and structural properties of the colloidal aggregates by using the specificity of DNA interactions to direct the interactions between particles of different size and composition.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Mechanisms of Cisplatin Nephrotoxicity

            Cisplatin is a widely used and highly effective cancer chemotherapeutic agent. One of the limiting side effects of cisplatin use is nephrotoxicity. Research over the past 10 years has uncovered many of the cellular mechanisms which underlie cisplatin-induced renal cell death. It has also become apparent that inflammation provoked by injury to renal epithelial cells serves to amplify kidney injury and dysfunction in vivo. This review summarizes recent advances in our understanding of cisplatin nephrotoxicity and discusses how these advances might lead to more effective prevention.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              High density synthetic oligonucleotide arrays.

              Experimental genomics involves taking advantage of sequence information to investigate and understand the workings of genes, cells and organisms. We have developed an approach in which sequence information is used directly to design high-density, two-dimensional rays of synthetic oligonucleotides. The GeneChipe probe arrays are made using spatially patterned, light-directed combinatorial chemical synthesis and contain up to hundreds of thousands of different oligonucleotides on a small glass surface. The arrays have been designed and used for quantitative and highly parallel measurements of gene expression, to discover polymorphic loci and to detect the presence of thousands of alternative alleles. Here, we describe the fabrication of the arrays, their design and some specific applications to high-throughput genetic and cellular analysis.
                Bookmark

                Author and article information

                Contributors
                rhg@caltech.edu
                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Publishing Group UK (London )
                2041-1723
                20 July 2018
                20 July 2018
                2018
                : 9
                Affiliations
                [1 ]ISNI 0000000107068890, GRID grid.20861.3d, Arnold and Mabel Beckman Laboratories for Chemical Synthesis, Division of Chemistry and Chemical Engineering, , California Institute of Technology, ; Pasadena, CA 91125 USA
                [2 ]ISNI 0000 0001 2297 6811, GRID grid.266102.1, Interventional Radiology Research Laboratory, Department of Radiology and Biomedical Imaging, , University of California-San Francisco, ; San Francisco, CA 94143 USA
                Article
                5305
                10.1038/s41467-018-05305-2
                6054622
                30030447
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                Funding
                Funded by: FundRef https://doi.org/10.13039/100000002, U.S. Department of Health & Human Services | National Institutes of Health (NIH);
                Award ID: 5T32EB001631-13
                Award ID: R01CA194533
                Award Recipient :
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized

                Comments

                Comment on this article